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Abstract—In this article, we describe Virtual Sensing Frame-
work (VSF), which reduces sensing and data transmission ac-
tivities of nodes in a sensor network while not compromising
on the sensing interval, and hence data quality. VSF creates
virtual sensors at the sink to exploit the temporal and spatial
correlations amongst sensed data. Using an adaptive model at
every sensing iteration, the virtual sensors can predict multiple
consecutive sensed data for all the nodes with the help of
sensed data from a few active nodes. We show that even when
the sensed data represents different physical parameters (e.g.,
temperature and humidity), our proposed technique still works
making it independent of sensor type. Applying our techniques
can substantially reduce data communication among the nodes
leading to reduced energy consumption per node yet maintaining
high accuracy of the sensed data. In particular, using VSF on
the temperature data from IntelLab and GreenOrb dataset, we
have reduced the total data traffic within the network up to 98%
and 79% respectively, while the average root mean squared error
of the predicted data per node is as low as 0.36°C and 0.71°C
respectively. This work is expected to support future Internet of
Things in large scale deployment.

Index Terms—

I. INTRODUCTION

Energy is a precious resource in wireless sensor nodes.
Idle-listening and packet overhearing is a great source of
energy drain. Thus, a number of MAC protocols [1], [2] have
been developed to tackle these issues. Since data transmission
and reception require higher energy compared to sensing,
many efforts have also been made to reduce the overall data
traffic within the network. This includes efficient clustering
algorithms and in-network data aggregation [3], [4], coverage
problems [5], [6], data compression [7], [8], etc. This work
falls in the later category, where energy-efficiency is achieved
by reducing activity of the nodes.

A. Motivation

A popular technique to reduce overall data traffic is to utilize
the over-provisioning of nodes, i.e., keep only a subset of
nodes active at any point of time [9]. In such cases, data
from the inactive nodes are either assumed to be the same
as that of active nodes or can be reproduced using the data
from the active nodes. This reproduction is possible due to
the fact that there is inherent spatial and temporal correlation
amongst the sensors, and if two sensor nodes show very high
correlation, the data from one node can be predicted accurately
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Fig. 1: Nodes that are highly correlated with Node 1 at
different period are marked in the vertical lines.
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Fig. 2: Correlation among the nodes cannot be described using
Euclidean distance.

with the help of the other. In a wireless sensor networks
(WSN), usually a node is highly correlated with many other
nodes. To maximize the energy savings of the network, as
many nodes as possible need to be kept in low-power sleep
mode (dormant) while their data can be predicted accurately
with the help of few active nodes. We term this as “maximum
sleeping node policy”.

Many existing correlation-based data gathering techniques
assume a priori correlation among the sensor nodes [10], [11],
[12]. However, data correlation among the sensor nodes often
shows a dynamic behavior, i.e., the correlation among the
nodes changes over time. Based on the temperature data of the
IntelLab deployment [13], we have calculated the correlation
among the nodes. Fig. 1 shows the nodes (asterisks on the
vertical line) that are highly correlated with Node 1 at different
time. From this figure it is clear that the correlation among the
nodes varies significantly with time.

Another common assumption is that if two sensor nodes
are geographically collocated, they produce highly correlated
data [12], [14]. However, in many real-life deployments, two
sensor nodes that are far apart can also show high data
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correlation; whereas, two close-by sensors may show poor data
correlation. To demonstrate our claim, we show the correlation
and geographical distance between Node 1 with all other nodes
in Fig. 2. According to general assumption, the correlation
among nodes decline with increase in distance. However, the
figure shows that this claim is not always valid. Based on
these observations, we claim that any correlation-based data
prediction framework should be dynamic and adaptive.

B. Contribution

We propose Virtual Sensing Framework (VSF), an efficient
data collection framework for WSN that reduces activities of
the nodes to reduce overall energy consumption of the net-
work, and maintains sensing requirements of the deployment.
It considers changes in underlying correlation structure while
exploiting the data correlation among the nodes. The following
are our main contributions.

1) Virtualization of sensed data: To reduce energy con-
sumption, VSF adopts the policy of keeping as many nodes
as possible in low-power sleep mode and only a few nodes
as active. It also helps avoiding data transmission for the
active nodes whenever possible. The fewer measurement data
is complemented by accurate prediction of the sensed data
exploiting correlations. The data prediction is done by the
virtual sensors in successive sensing intervals with minimal
involvement of the physical nodes.

2) Adaptive correlation exploitation: VSF provides an
adaptive prediction scheme without considering any a priori
correlation structure among the nodes. We consider a generic
situation where geographical collocation of nodes may or may
not imply higher correlation among the nodes. To the best of
our knowledge, this is the first piece of work that considers
this generalist view. Using an information theoretic approach,
we also show that VSF can retain high data accuracy whenever
there is high correlation among the nodes.

3) Active node selection: We formulate a sensor selection
problem for collection of sensor data that are correlated where
maximal sleeping and minimum energy consumption policy is
adopted. We propose a heuristic algorithm for the selection of
active nodes. The algorithm selects a new set of active nodes
after a few sensing intervals to attain uniformity in energy
expenditure amongst the nodes over a longer period. Using
VSF on real-world datasets, we show significant amount of
energy savings while maintaining the required data accuracy.
This eventually leads to lifetime improvement of the deployed
WSN.

The rest of the paper is organized as follows. First, we
discuss some the existing energy-efficient data collection
techniques for WSN in Section II. Then, we discuss the
virtual sensing framework and activity reduction technique in
Section III. In Section IV, we discuss the problem of active
node selection and propose a heuristic algorithm. In Section V,
we provide a thorough evaluation of our system. In the first
part of our evaluation, we show how the estimation mechanism
performs and how to set various parameters of the system. In
the latter part we compare our system with some of the existing
approaches. Finally, we conclude our work in Section VII.

TABLE I: Comparing VSF with energy-efficient data collec-
tion techniques.

Techniques

Data
traffic
reduc-
tion

Keep
nodes in
dormant

state

Correlation-
based Remarks

Clustering yes no yes/no usually all nodes
are active and send
their

In-
network
data ag-
gregation

yes no yes/no improvements
(compliments)
clustering

Sensor
data
prediction

yes no yes most comparable
work with our
method

Coverage
problem

yes yes no also comparable
with our work

Compressed
sensing

yes no no does not exploit
correlation; but the
goals is to reduce
data traffic

II. RELATED WORK

A large body of energy efficient data gathering techniques
exists in the literature. As the data transmission consumes a
large amount of energy, a common approach is to reduce the
amount of traffic in the network. Clustering is an effective
approach that reduces energy consumption by reducing the
number of data transmissions within a network [15], [16].
A group of collocated nodes select one amongst them as a
cluster-head (CH). Instead of directly reporting the sensed data
to the sink node, the nodes deliver the data to the CH. The
CH then takes the responsibility of delivering the data to the
sink. Usually, in a large WSN, multiple cluster heads exist,
and collaborate amongst themselves to deliver the data to the
sink. Thus, there is less traffic and less energy expenditure for
data transmission. However, every node need to be active to
sense and send their data.

Another important class of data collection technique is in-
network data aggregation to restrict the amount of data to be
delivered to the sink [4], [17], [18]. Data aggregation can be
performed either in every node or in a special node like the
CH. Though the idea is to combine data from multiple sources
and reduce data transmissions within the network, nodes are
still required to sense and send data. In network aggregation
combined with clustering can significantly reduce the overall
energy consumption of the network.

Most of these techniques do not consider correlations among
the sensor nodes. A policy for reduction in data transmission
can be formulated leveraging correlation-based estimation
techniques. A data estimation model can be formulated if
the estimated data does not deviate much from the sensed
data. Thus transmissions can be avoided. Transmission occurs
only when there is a large deviation is detected in the sensed
data [19], [20], [21]. Even though energy is saved significantly
by avoiding data transmission whenever possible all nodes
need to sense continuously.

Most of the proposals found in the literature do not find the
correlation among sensors explicitly. Rather a good correlation
structure among the sensors is assumed to be known a priori
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[10], [22], [23], [24]. Then by exploiting the correlation,
a significant amount of energy is saved. Correlation-based
collaborative MAC exploits spatial correlation in the MAC
layer to reduce the communication of redundant data [25]. On
the other hand, He et al. [26] propose a cross-layer approach to
gather correlated data. Cheng et al. utilize spatial correlation
for data collection in the WSNs equipped with multiple
sinks [27]. Further, correlation is also used for enhancing
monitoring quality [28] and estimating the missing data [29].

For WSNs, periodic on-off scheduling is an effective tool
to save energy of the nodes, and some important contributions
from the literature are briefly described here. When multiple
sensor nodes can monitor a common sub-area, data from only
one node is sufficient. The rest of the nodes are kept in sleep
mode [5], [9]. This is applicable only when sensor nodes
within close proximity produce correlated data. Moreover,
spatial correlation is assumed to be known (or modelled).

Recently, compressed sensing based data collection mecha-
nisms have received a lot of attention from the research com-
munity [8], [30], [31], [32]. The basic idea behind compressed
sensing is that if a large dataset has high sparsity, it can
be compressed. As a result, data transmission becomes less
expensive. More sparsity means smaller data size. Based on
this principle, a few samples of sensed data (from few sensor
nodes) are collected at the sink. Later, whole data set for the
entire network is reconstructed from these samples. Though
this technique does not assume any correlation among the
nodes, the basic assumption is that the data is sparse in some
domain, e.g., frequency domain.

The above mentioned works are summarized in Table I.
In contrast, VSF exploits the inherent data correlation among
the sensor nodes without assuming any a priori correlation
amongst the nodes including the physical parameters these
sensors measure. VSF can predict data for a large number of
consecutive sensing instances with sufficiently high accuracy.
Furthermore, VSF also tracks changes in correlation among the
sensor nodes over time. Hence VSF can adapt to the changes in
the environment and can work in a wide range of deployment.

III. VIRTUAL SENSING FRAMEWORK (VSF)

A sensor node consumes energy for each of its activity,
e.g., sensing, processing, data transmission etc. VSF aims to
reduce energy consumption by reducing frequency of sensing,
processing and data transmissions. In a data collection WSN,
each sensor node sense data in a predefined way and report the
sensed value to the sink. If the sensing activity of the sensor
nodes is reduced to lower the energy consumption, the purpose
of the deployment cannot be fulfilled. VSF supplements the
loss of sensing at the nodes by predicting their values. As a
result, the energy consumption of the nodes is reduced while
the application requirement is met.

A. VSF: Activity Reduction Scheme

Virtual sensors (VS) are the basic building blocks of VSF.
A VS contains a prediction model for the associated physical
sensor. As virtual sensors are at the sink, the reconstruction
of the sensed data does not affect the deployment goal (see

(a) (b)

Fig. 3: (a) Data collection scenario in a WSN; (b) Data
collection with virtual sensing framework.

Fig. 3). That is any application that uses the sensed data (for
monitoring and/or decision making) will always receive the
sensed data – actual measurement or predicted – from all the
virtual sensors.

As sensor values are usually correlated with their immediate
past values, they can be predicted by exploiting its temporally
correlated data. In order to increase the energy savings, a VS
should predict successive values while its corresponding PS
remains dormant. Therefore, changes in the physical parameter
during long dormant periods might not be captured by the
temporal correlation based method. In this case, prediction
accuracy can be improved by exploiting cross correlations
among the nodes. If two nodes have had very high correlation
in the recent past, it is safe to assume that both the nodes will
behave in a similar fashion for some time in the future too.
Hence in VSF, we choose to exploit autocorrelation as well
as cross correlations to fine-tune the prediction. The value
of r ranges between [-1,+1], where +1 signifies exactly the
same pattern (or highest correlation), 0 signifies absolutely no
correlation, and -1 signifies exactly opposite pattern. To define
high correlation between two nodes, we define correlated
node pair as

corr(si, sj) =

{
1, if |r(ui, uj)| ≥ thcorr;
0, otherwise, (1)

where node si and sj form a highly correlated node pair
(i, j) (or highly correlated nodes), if the above condition is
satisfied; ui and uj are the sensed data vectors for nodes i and
j respectively, and thcorr is a predefined correlation threshold
that is used to decide sufficiently high correlation as any two
vectors will always have some correlation, high or low.

In a correlated node pair, one node can remain dormant for
the duration of prediction and the other one can remain active
to help predict the sensing data of dormant node. This active
node is referred to as active companion. A node can be highly
correlated with more than one node, e.g., node si is highly
correlated with m different nodes. This implies that node si

is part of m different correlated node pairs. This subset (Ci)
of m nodes are termed as correlated companions, and it can
be defined as

sk ∈ Ci ⇐⇒ corr(si, sk) = 1. (2)

Every node in the network has a set of correlated companions.
If a node becomes active, it can act as active companion for all
of its correlated companions. Thus only a few nodes need to
be active within a WSN, and most of the (remaining) nodes
can be kept dormant. The correlated companions of a node
change with time as the data correlation change. Therefore,
the companion of a dormant node is not predefined and fixated
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Fig. 4: Data collection phases in VSF using activity reduction
scheme.

i.e., it can also change over time based on changing correlation
between the sensors.

As mentioned earlier, VS uses a mix of autocorrelation and
cross correlation based predictor, i.e., it utilizes the past values
of itself and the currently sensed data from its active com-
panion. This may drain energy of active nodes significantly.
To circumvent this problem, VSF also conserves energy in
the active nodes, whenever possible. Here, the node continues
to sense the physical parameters, and also predicts the value
using an autocorrelation based predictor. If the prediction error
lies within a tolerable error bound, then the node does not
transmit the sensed data. The data is transmitted only when
the predicted data differs largely with that of sensed data.
As energy spent by a nodes CPU for making the selective
transmission decision is less than the energy cost of a data
transmission, by withholding data transmissions, significant
energy is saved even in the active sensors. When an active
node does not transmit the sensed data, then the associated
virtual sensor predicts the data (using autocorrelation only). It
is clear that the functionality of the virtual sensors associated
with a dormant and an active node are different. Thus, two
different types of VSs are used. We use the terms Dormant
Virtual Sensor (DVS) when the corresponding PS is in dormant
state, and Active Virtual Sensor (AVS) when the corresponding
PS is active.

B. VSF: Adaptive Node Correlation

It is clear that a dormant node can conserve more energy
than an active node. State of the nodes switch between dormant
and active modes after a certain number of time-slots to ensure
equal drain of battery. As we do not assume a priori knowl-
edge about the sensor data statistics, VSF needs to capture the
correlation among sensors. It should also monitor the change
in the correlation and adapt dynamically. To accomplish this,
the whole data collection period is divided into three phases –
training period, operational period and revalidation period as
shown in Fig 4.

The sensing activity starts with training period. During this
period, all the PSs collect data and transmit their data to
the sink. At this point all the PSs are associated with their
respective AVS. Using these training data, correlation among
the sensor nodes is computed. At the end of this period,
VSF marks the nodes to be either active or dormant based
on their correlation. It also assigns an active companion for
each of the dormant nodes. Then it creates prediction models

Fig. 5: The filter used for a dormant virtual sensor is a hybrid
of a transversal filter (based on autocorrelation) and linear
regression (based on cross correlation).

for the dormant nodes (DVS). As mentioned earlier, a DVS
uses a hybrid model of autocorrelation and cross correlation
for its prediction. On the other hand, an AVS uses only an
autocorrelation function. We have explained the prediction
mechanism in Section III-C.

The training period is followed by an operational period,
where only active nodes sense. A dormant node remains in
sleep mode during this period and its values are predicted
by a DVS using the values from an active companion. On
the other hand, an active node performs only selective data
transmissions. It discards the sensed data if it identifies that
the predicted data by the AVS is within a tolerable error bound.
The active PS is able to calculate the prediction error, because
at the beginning of an operational period, its corresponding
AVS shares the prediction model with it. When the prediction
error crosses certain error threshold, the active node transmits
the data and updates the model parameter. When an AVS
receives the sensed data, it also updates the model parameter.
In this way, the model parameters remain synchronized at
both the places. Method of model update is discussed in
Section III-D. The selective transmission process of an active
node runs in every active node. On the other hand, the activity
reduction scheme of VSF runs at the sink node (Section IV).
Please note, we assume that the sink node has sufficient
amount of memory and energy.

The revalidation period resumes all PSs to active mode and
all DVSs are switched to AVSs. A revalidation period is shorter
compared to the training period. The prediction models for the
dormant nodes (in the last operational period) are validated.
At the end of this period, the correlation pattern among the
sensor nodes is updated, a new set of active and dormant nodes
are selected and an active companion is assigned to each of
the dormant node. Then, the operational period resumes. If
a significant change in the correlation pattern is identified,
instead of resuming an operational period, another training
period may be started.

C. Prediction models for Virtual Sensors

As mentioned earlier, a dormant virtual sensor exploits
exploits autocorrelation as well as cross-correlation to predict
the data. Fig. 5 shows the hybrid filter used for a DVS, which
is a combination of an autoregression function (transversal
filter) and linear regression function. On the other hand, an
active virtual sensor exploits only autocorrelation of the sensed
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data; thus, only the autoregression function is used for it.
An autocorrelation based transversal filter can be described
as following –

u(t) =

p∑
i=1

u(t− i)α(i), (3)

where u(t) is the predicted time-series value at time instance
t; [u(t−1), u(t−2), ..., u(t−p)] are the previous p values of
time-series; [α(1), α(2), ..., α(p)] are the filter coefficients; and
p is the order of the autocorrelation model. Once the filter co-
efficients are determined, the current value of the series can be
estimated using the past values. To find the filter coefficients,
a set of training data is required from the time series. Suppose,
there are Tp training data (u(1), u(2), ..., u(Tp)) available from
the series. Then, the filter coefficients can be found by solving
the following linear equations,

Uα = u, (4)

where,

U =


u(p) u(p− 1) · · · u(1)

u(p+ 1) u(p) · · · u(2)
...

...
. . .

...
u(Tp − 1) u(Tp − 2) · · · u(Tp − p)

 ,

α = [α(1), α(2), ..., α(p)]T ,

u = [u(p+ 1), u(p+ 2), ..., u(Tp)]T .

This is a overdetermined system of linear equations, as the
number of equations (Tp − p) are more than the number of
variables (p). As U is not a square matrix, an unique solution is
not possible, and an approximate solution can be found using
least-square method. The least-square solution of the Eq. 4
can be found using the following equation –

α = (UTU)−1UTu. (5)

The linear regression model can be represented using the
following equation,

u(t) = β(0) + v(t)β(1), (6)

where u(t) is the predicted time-series value at time instance t;
v(t) is the another time-series (correlated) value at time t; and
[β(0), β(1)] are the coefficients of the linear regression model.
Similar to the autoregression model, the coefficients of the
linear regression can also be found by solving the following
linear equations,

V β = u,

where,

V =


1 v(p+ 1)
1 v(p+ 2)
...

...
1 v(Tp)

 ,

β = [β(0), β(1)]T ,

u = [u(p+ 1), u(p+ 2), ..., u(Tp)]T .

The final prediction for a DVS is achieved by combining
the outputs of both the regressor. Based on the accuracy of
the models, the final value is calculated as a weighted sum of
the predicted values,

û(t) =
(γ · u1(t) + δ · u2(t))

(γ + δ)
. (7)

The accuracy of the models are calculated using Chi-
squared statistics, which is a well-known method to test good-
ness of fit [33]. To this end, the error values of the estimated
signal need to be known. Using the model parameters and the
training data set, first, the sensor value is estimated using both
the models (u1(t) and u2(t) in Fig. 5). Then, the Chi-squared
statistics can be obtained by taking normalized sum of the
squared-errors. Chi-squared statistic is calculated as,

χ2
1 =

Tp∑
t=p+1

(u(t)− u1(t))2

σ2
, (8)

where σ2 is the variance of the observed signal. To get an
inference from the statistics, a reduced Chi-squared statistic
can be calculated by dividing it by the number of degrees
of freedom. The accuracy of the autoregression model (the
goodness of fit), represented as γ, is given by,

γ = 1− χ2
1

ν
, (9)

where, ν, the degrees of freedom is equivalent to the number
of samples (Tp − p − 1). γ lies between (0, 1), where 0
implies complete failure of capturing the system behaviour
and 1 implies complete resemblance of the system behaviour
by the model parameters. Similarly, the accuracy of the linear
regression model (δ) can also be calculated.

D. Model parameter update

If the correlation structure among the nodes is known a
priori and remain constant, a Wiener filter can be developed,
which is said to be the optimum in the mean-square error
sense. As the correlation is unknown and changes significantly
with time, the filter coefficients can become outdated and may
result in erroneous prediction. Thus, VSF uses an adaptive
filtering technique to update the filter coefficients.

As mentioned earlier, a sensor node transmits the sensed
data only when the error in prediction crosses a certain thresh-
old value. To reduce the prediction error in future instances,
the model parameters need to be updated. To update the model
parameters, we have used an least-mean-square based adaptive
filtering technique. First, the prediction error is calculated
using,

e1(t) = u(t)− u1(t),

where u(t) and u1(t) are the actual and predicted sensor values
respectively. Then the filter coefficients are updated using,

α = α+ µ · u · e1(t),



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

where u = [u(t−1), u(t−2), ..., u(t−p)]T is the input vector
of the filter, and µ is the learning rate of the adaptive algorithm.
Procedure to set µ can be found in [20]. Similarly, cross-
correlation among the nodes are updated after each training
and revalidation period.

E. Heterogeneous Virtual Sensor (HVS)

As discussed previously, VSF can accurately predict the
sensed data for a dormant (or semi-dormant) sensor with the
help of an active sensor. Here, the inherent assumption is that
both the sensor nodes sense the same physical parameter. We
extend this work to heterogeneous sensing, i.e., predicting the
sensed data even if the two sensor nodes sense two different
physical parameters, e.g., a temperature sensor data can be
used to predict humidity sensor data, and vice-versa, a light
sensor data can be used to predict temperature sensor data, and
vice-versa. The mechanism for a heterogeneous virtual sensor
(HVS) is just like a DVS. HVS works because VSF considers
only data correlation among two sensor nodes. However, for a
HVS, some contextual information is required. For example,
the error thresholds might be different for two different physi-
cal parameters. Similarly, heterogeneous virtual sensing can be
applied for a particular time frame, e.g., light and temperature
data show correlation only during the daytime.

IV. ACTIVE NODE SELECTION

As described in Section III, if a node has multiple corre-
lated companions, it can become an active companion for all
these nodes, i.e., sensed data only from this active node is
sufficient to predict data for all other nodes that are highly
correlated with it. However this raises a few questions such
as, (i) wheather a node should be active or dormant? (ii) how
many nodes should be active? To answer these questions, in
this section, we describe how nodes are assigned to either
of these sets - active and dormant. The process is divided
into two steps: (i) finding correlation structure of nodes; and
(ii) assigning roles for nodes.

1) Finding correlation structure of nodes: Based on the
sensed data, the correlation amongst the nodes can be cal-
culated at the end of the training period. A threshold is set
to define highly correlated nodes. As mentioned earlier (Sec-
tion III-A), the value of correlation coefficient is 1 when two
time series shows identical trend over time. Thus, correlation
coefficient close to 1 signifies a similar trend between two
time series if not exactly identical. As a result, sufficiently
high correlation based on high correlation threshold (close to
1) between nodes means their sensed data follow a similar
pattern and the prediction is expected to be highly accurate.
As mentioned earlier, every node in a WSN has its correlated
companions. As an illustration, Fig. 6a shows a small WSN
with six sensing nodes. The idea is to find the correlation
between all pairs of nodes and listing those which are above
a certain threshold as shown in Fig. 6b. From this table, we
can find the corresponding correlated companions.

2) Assigning roles to nodes: If a node is selected as an
active node, all its correlated companions can be kept in
dormant state. The goal is to select a minimal number of active

(a) (b)

Fig. 6: (a) A small WSN with six sensing nodes and a sink
node; (b) correlated companions of each node.

nodes (maximal sleeping node policy) such that the union of
the correlated companions of all the active nodes contains all
the nodes in a WSN. For simplicity, we consider that all the
nodes consists homogeneous hardware so that for any node,
energy consumption in active mode is equivalent. As a result, a
minimum number of active nodes can ensure minimum overall
energy consumption by the WSN.

The problem is that if a random node is selected as active, it
may not be able to communicate directly or through multihop
path with the sink. Therefore, it is required to select a node
as active, only if, it can send its sensed data directly or
through another active node. The best selection is to find
a set of minimum number of active nodes while satisfying
the following conditions: (a) they form a connected graph,
specifically, all of them can reach the sink node; (b) every
dormant node has at least one active companion so that its
sensed data can be predicted with a tolerable error bound.
Once a node is selected as active, it consumes more energy
than a dormant node. Naturally, it should not operate as an
active node for a long time; otherwise it will drain out all of
its energy quickly. To ensure fairness in energy consumption,
a new set of active (and dormant) nodes are selected before
every operational period.

A. Active node selection problem: combinatorial optimization

We represent the network as a node- and link-weighted,
undirected graph G = (S,L), where S is the set of all nodes
in the network and L is the set of links in the network. A
link between a nodes i and j exists if they are within the
transmission range of each other. The cost of this link, denoted
by el(i, j) or el(j, i), is equal to the energy consumption for
transmitting a packet from one node to the other. Each node
is also associated with a non-zero cost (node-weight), which
is equal to the energy consumption based on its CPU and
sensing activity. For a node i, let ea(i) be the amount of
energy consumed in active state and ed(i) be the amount of
energy consumed in dormant state. We now formally define
the problem as follows.

Definition 1. Active node selection: Given a node- and link-
weighted undirected graph G = (S,L) with n nodes and a col-
lection of n subsets {S1, ..., Sn} such that Si is the correlated
companions of node i and

⋃
i=1:n Si = S, find the minimum

cost subgraph G′ = (A,L′), where A ⊆ S and L′ ⊆ L.
Here cost of G′ is defined as,

∑
i∈A ea(i)+

∑
(i,j)∈L′ el(i, j).

The minimum cost subgraph, G, has to satisfy the following
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conditions – (i) the union of the correlated companions of the
nodes in A is S, i.e.,

⋃
k∈A Sk = S, and (ii) G′ is a connected

graph.

Theorem 1. Active node selection (decision) problem is NP-
complete. The optimization version of the problem is NP-hard.

Proof. It is easy to show that active node selection ∈ NP, since
a nondeterministic algorithm only needs to find a subgraph
A and then verify in polynomial time that (i) the union of
the correlated companions of the nodes in A is equal to S
(complexity is O(n)), and (ii) the nodes in A are connected
(complexity of depth first search (DFS) is O(n)). Therefore,
active node selection (decision) problem is NP. The problem
can be reduced to the set-cover problem. Without the addi-
tional constraint that the minimal subset of nodes should form
a connected subgraph, the problem is same as the set-cover
problem. This means the problem is as hard as the set cover
problem, if not harder. As the set-cover problem is known
to be NP-hard [34], the Active node selection problem is also
NP-hard. Because of this direct equivalence with the Set cover
problem, we have omitted detailed proof.

The primary goal is to follow a maximal sleeping node
policy to reduce energy expenditure of a WSN. This leads
to a compromise in sensed data accuracy. Since we exploit
the high data correlation feature of the nodes, the information
provided by VSF can be close enough to the ground truth. By
information, we refer to the whole data set, which constitutes
the actual sensed values from the active nodes and predicted
values from the dormant nodes. The following proposition tries
to address the deviation of the predicted data compared to the
ground truth vis-à-vis the correlation amongst the sensors.

Proposition 1. The total distortion D of information, due to
selection of G′ instead of G, is a function of |A| and the
correlation among the sensed data of the nodes. For high
correlation, D is small.

Proof. Let us assume ∆ is the total information communicated
by all the nodes of S. ∆ can be estimated from the joint
entropy of the observations of the nodes and is expressed as,

∆ = H(S) (10)

= H(S1, S2, ..., Sn) |
⋃

i=1:n

Si = S

= H(S1) +H(S2) + ...+H(Sk) |
⋃
k∈A

Sk = S.

Sk represents the set of correlated companions of node k ∈ A.
The observation from all the nodes in Sk can be represented by
a random variable Yk. The information obtained by observing
Yk can be measured using the entropy of Yk, i.e., H(Yk),
further, H(Sk) = H(Yk). However, only node k is selected as
an active node from Sk, and the distribution, sampled by node
k, can be described by another random variable Xk. H(Yk)
can be expressed with respect to Xk as follows [35].

H(Yk) = I(Yk, Xk) +H(Yk|Xk). (11)

The mutual information I(Yk, Xk) measures the gain of in-
formation about Yk by observing Xk. On the other hand, the

conditional entropy H(Yk|Xk) denotes the extra information
required to estimate H(Yk). In this context, the conditional
entropy H(Yk|Xk) is the estimation of distortion Dk for ob-
serving Xk instead of Yk. The distortion Dk can be calculated
from the correlation of nodes of Sk. The correlation ρk can
be expressed as follows [35],

ρk = I(Yk, Xk)/H(Yk). (12)

From the equations (11), and (12), the distortion can be
calculated as,

Dk = H(Yk|Xk) = H(Yk)− I(Yk, Xk) (13)
= H(Yk)− ρkH(Yk)

= H(Yk)(1− ρk)

It can be observed that, from Eq.(13), for high value of ρk,
Dk is small.

The total distortion D can be calculated as,

D =

|A|∑
k=1

Dk =

|A|∑
k=1

H(Yk)(1− ρk). (14)

So, the total distortion D depends on the size of A or |A|, and
very small for high ρk, ∀k ∈ A.

B. A heuristic algorithm for active node selection

As explained in Section IV-A, the Problem 1 on hand is
NP-hard. An optimal solution is not guaranteed to be found
in polynomial time. To evolve a polynomial time solution for
the active node selection problem, we propose a heuristic,
called active node selection heuristic (ANSH). Apart from
the connectivity constraint, an incautious active node selection
may render some of the nodes to be active more often than the
rest. Consequently this leads to run down of energy of these
nodes faster than the rest. This might cause a disconnected
network and reduces the lifetime of the network. Therefore, a
careful active node selection should not only consider minimal
energy consumption for a WSN, but also balance the energy
expenditure across the nodes.

We separate the active node selection from the route finding
process. To find the shortest path from each node to the sink
node, we depend on the underlying routing protocol. The
shortest path tree helps to derive the parent-child relationships
for the nodes in the network. Now, if we ensure that the
parent node of every active node is also selected as active,
the connectivity can be ensured. Note that the sink node is
always selected to be active.

The active node selection process, described in Algorithm 2,
marks each node for either of the roles - active (state = 1)
or dormant (state = -1). Initially, all the nodes are marked
as undecided (state = 0). Then, the algorithm selects a node
as active that has maximum residual energy among all the
nodes. This selected node is then marked as active. To ensure
connectivity, its parent node (also the parent’s parent) needs
to be marked as active. A recursive function is called to
mark a node and its parent node as active (markAsActive).
When a node is marked active, all its correlated companions
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Input: Residual energy (e1res, ..., e
n
res), parent node

(p1, ..., pn), and the correlated companions
(C1, ..., Cn) of every node.

Output: Nodes are split into two subsets: Active
(state = 1) and Dormant (state = −1).

state[1..n]← 0; cover ← 0;
while (cover < n) do

eimax ← 0; imax ← 0;
for (i = 1 : n) do

if (emax < eires) then
emax ← eires; imax ← i;

end
end
cover ← markAsActive(imax);

end
if (state[i] == 0) then

cover ← cover + 1;
end
state[i]← 1;
if (pi 6= sink AND state[pi] 6= 1) then

cover ← markAsActive(pi);
end
for (k = 1 : n) do

if (state[k] == 0 AND sk ∈ Ci) then
state[k]← −1;
cover ← cover + 1;

end
end
return cover;

Algorithm 2: ANSH: Algorithm for active node selection.

can be marked dormant. However, some of these correlated
companions might be marked active previously. Thus, only
the undecided correlated companions of an active node are
marked as dormant. After this, next active node is selected
based on the maximum residual energy among nodes that are
still undecided. The node selection process continues, until all
the nodes are marked either active or dormant. Note that if a
node is marked dormant, one of its highly correlated nodes is
guaranteed to be marked as active.

To equalize the energy expenditure among the nodes, we
mark nodes active based on maximum residual energy. If a
node is marked active, its residual energy will be lesser in the
next round of selection as compared to the dormant nodes.
As a result, a new set of nodes will be marked as active.
This ensures fair energy expenditure among the nodes in the
network. If multiple nodes have the same residual energy, one
random node among them is marked active.

V. EVALUATION

We have evaluated virtual sensing framework based on
the temperature and humidity data sets collected from the
Intel Lab deployment [13] and the GreenOrb deployment [36]
along with some computer generated data sets. In this section,
we present some of the results based on the temperature
dataset obtained from these two real-world deployments. The
summary of the deployments are shown in Table II. Note that

TABLE II: Deployment summary.

deployment nodes1 data
points/node

sensing
inter-
val

type

Intel Lab [13] 51 5000 31 sec Indoor (of-
fice)

GreenOrb [36] 220 432 10 min Outdoor
(woods)

TABLE III: Current and energy consumption by a tmote sky
node for its various activity. Energy consumption is calculated
based on 31s sensing interval.

(a) Current consumption

Activity Current
CPU active 1800 µA
CPU sleep 5.1 µA
Radio idle 20 µA
Radio sleep 1 µA
Radio transmit 17.4 mA
Radio receive 19.7 mA

(b) Energy consumption

Activity Energy
CPU active 9.33 mJ
CPU sleep 0.57 mJ
Packet TX 4.74 mJ
Packet RX 5.23 mJ
Temp. sensing 0.33 mJ

we consider only those nodes from these deployments that
have sufficient data points.

We divide the evaluation into two parts. In the first part, we
compare performance of the VSF, and how it is affected by
changing the various parameters. Since choice of a proper set
of values for the parameters is highly dependent on the data
set, we provide an indication on how to set those parameters.
In the second part, we compare performance of VSF with
respect to some of the existing data collection techniques.
Though the results described in this article are produced
using a Matlab implementation, we have developed a working
prototype of VSF using Java.

We used three metrics to evaluate performance of VSF
– (i) the number of data packet transmission, (ii) accuracy
of prediction, and (iii) energy expenditure by the nodes. We
use root mean squared error (RMSE) to measure accuracy of
the prediction. To compute energy expenditure by the nodes
during the simulation period, we have considered the Tmote-
sky [37] for energy consumption measurement. Various current
and energy consumption values are summarized in Table III.

A. Performance of VSF

In VSF, nodes either remain active or dormant based on their
assigned roles. As mentioned earlier, a node’s role (active or
dormant) changes over time. Fig. 7 shows the predicted data
using VSF along with the sensed data for a total 5000 data
points for Node 1 of the IntelLab deployment (upper plot).
During this period, the node was assigned both the roles for
some time. From this figure, it is clear that the predicted data
closely follows the actual sensed data. The lower part of the
plot shows the prediction error (absolute error values). Most
of the time, the prediction error is within the limit of 1°C.
There exists some occasional outliers, but the overall VSF
error bound is suitable for many WSN applications. Similar
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Fig. 7: Sensed and predicted data of Node 1 over a period,
where it was assigned both active and dormant role some time.
The length of training, operational, and revalidation periods are
set to 40, 20, and 10 data points repectively.
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Fig. 8: Temperature data from Node 1 is used to predict
humidity data from Node 23 and vice-versa.

results have also been observed for all the remaining nodes of
both the deployments.

B. Heterogeneous Virtual Sensing

As mentioned earlier, VSF framework is not only applicable
when all nodes have homogeneous sensor; it can be applied to
any type of sensor data that show high correlation irrespective
of data type. But it cannot be applied to any such sensed data
that can change abruptly without showing any trend over time,
e.g., indoor light (artificial light) can be completely different
with a small time interval.

We have applied VSF on two heterogeneous data types.
As an illustration, we have used temperature data from Node
1 and humidity data from Node 23 (see Fig. 8). We have
preselected them, as we know that they have a very high data
correlation. During the process, either of the node is selected
as active. That means, temperature data is predicted based on
the humidity data and vice-versa.

C. Adaptation to data correlation change

In VSF, all nodes go through the three operating modes,
i.e., training, operational (active/dormant) and revalidation.
As mentioned earlier, the operating mode of the nodes are
decided based on the data correlation among the nodes. A
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(a) Re-training at a fixed interval (after 5 revalidation period).
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(b) Decision about re-training is taken dynamically based on data correlation.

Fig. 9: Various operating modes of Node 1 in VSF for the first
500 data points. During the operational period, a node can be
either active or dormant.
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Fig. 10: A comparison between fixed and dynamic re-training
schedule. Average prediction error for a node is 0.59 °C and
0.43 °C for the fixed and dynamic schedules respectively.
Similarly, average energy consumption is 34.64 J and 33.90 J
respectively.

small snapshot (500 data points) of the operating modes for
Node 1 is shown in Fig. 9b. At the beginning, Node 1 enters
the training period like all other nodes in the deployment and
they are associated with a low threshold active virtual sensor
(AVS). The length of the training period is set to 40 data
points. At the end of this period, the operational period starts
(20 data points). During this operational period, Node 1 is
assigned dormant. Thus, it is associated with a dormant virtual
sensor (DVS).

After the operational period, Node 1 enters the revalidation
period as all other nodes in the deployment. Similar to the
training period, nodes are also associated with an AVS during
this period. After the revalidation period, usually another
operational period starts with new role for the nodes (a
different set of active and dormant nodes). In this case, Node 1
is assigned as active and is associated with an AVS. Presuming
an operational period depends on the prevalence of correlation
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pattern among the nodes as it were during the last training
or revalidation period. If a smaller fluctuation is noticed, a
revalidation period can proceed to another revalidation period
(after data point 250). In case of a huge data correlation
deflection, a new training period is started (after data point
320).

The dynamic adaptation of the operating modes lead to a
better prediction accuracy and lesser energy consumption by
the nodes, as compared to a fixed schedule for the operating
modes (Fig. 9b). The lengths of the operating modes are same
in both the cases, i.e., 40, 20 and 10 data points for the training,
operational, and revalidation period respectively. But, for the
fixed schedule case, a revalidation period is always followed
by a operational period, and after 5 operational period (and 4
revalidation period in-between) the training period is initiated.
In this case the revalidation period is used only for selecting
a set of active node for the next operational period.

The dynamic adaptation of the operating modes is a better
choice than the fixed schedule as it is clear from Fig. 10.
Using 5000 sensed data from the 51 nodes of the IntelLab
deployment, we found that the prediction error (RMSE) for
most of the nodes is higher for fixed schedule case than the
dynamic adaptation case (Fig. 10a). At the same time, energy
consumption by most of the nodes for the fixed schedule
case is also higher than the dynamic case (Fig. 10b). The
energy consumption for the fixed schedule case can be reduced
by increasing the interval between two training periods. But,
this would only increase the prediction error. As a result, the
dynamic scheduling of the operating modes can tackle the
dynamic data correlation pattern among the nodes (over time).

D. Deciding the lengths of the operating periods
The lengths of the operating periods play a role in prediction

error, and number of data transmissions (or energy consump-
tion by the nodes) within the network. To reduce energy
consumption, as many nodes as possible need to be kept in
dormant mode for the maximal amount of time. Thus, a longer
operational period can lead to a overall reduction in energy
consumption as most of the nodes are kept dormant. However,
longer operational period can lead to higher prediction error
for the dormant nodes. These can be complemented by longer
revalidation period. But, again, longer revalidation period leads
to higher energy consumption by the nodes as all the nodes
are accompanied by active virtual sensor (AVS) during this
period.

Fig. 11 shows the average prediction error (RMSE) and
average energy spent by a node for 5000 sensing intervals
(data points). Four different lengths (20, 40, 60 and 80 data
points) of training periods (Tp) are used. For each length of
the training period, four different operational periods (Op)
of 10, 20, 30 and 40 data points are used. The revalidation
periods (Rp) is kept fixed to 10 data points. From the figure,
it is clear that energy expenditure is lower for the smaller
training period and higher operational period, but it lacks
prediction accuracy of the sensed values. On the other hand,
prediction accuracy increases with the cost of more energy
expenditure, i.e., longer training period and smaller operational
period (more data transmissions within the network).
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Fig. 11: Average prediction error and energy consumption per
node for various lengths of the operating periods based on the
IntelLab deployment data.
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Fig. 12: Tolerable prediction error has an immediate impact
on the accuracy of VSF mechanism, as well the on the energy
consumption of the nodes. Setting a tolerance level (threshold)
depends on the application requirement.

The length of these periods can be dependent on the deploy-
ment and their sensing intervals. Though the tendency should
be larger operational period and smaller revalidation period,
a suitable length of these periods can be selected in such a
way that the operational periods are small enough to contain
any possible drift of the data correlation among the nodes. To
maintain minimal energy expenditure and high data accuracy,
for the IntelLab deployment, a suitable < Tp, Op, Rp > com-
bination is 40, 20, and 10 data points respectively (Fig. 11).

E. Effect of the error threshold

In an active node, not all the sensed data is transmitted. If
the prediction error is going to be within a predefined error
threshold (tolerable error), the node avoids transmitting the
data. If this threshold is set to a higher value, the significant
number of data transmission can be avoided. But, this can
decrease the accuracy of the overall data set. Fig. 12 shows
how the prediction error increases when the error threshold
increases. On the other hand, when the error threshold is
lower, the data accuracy increases; but this also increases the
number of data packets within the network, as well as energy
consumption of the nodes. So, setting up this threshold is
highly dependent on the application requirement.

F. Effectiveness of correlation based node grouping rather
than collocation

We have argued for a system that node correlation is
calculated based on their sensed data only, irrespective of
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Fig. 13: IntelLab dataset: Comparison of VSF with geographical collocation-based clustering.
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Fig. 14: GreenOrb dataset: Comparison of VSF with geographical collocation-based clustering.

Fig. 15: Node correlation based on data and geographical
collocation.

their geographical collocation. This strategy provides a better
accuracy for data estimation.

Proposition 2. Correlation based on sensed data is superior
than the geographical collocation based, when data estimation
is done exploiting the correlation.

Proof. Suppose, the data correlation among the nodes is fixed
and known a priori. To maintain high accuracy of the predicted
data using VSF, member nodes in a particular group need to
be highly correlated, i.e., their pairwise correlation is above
certain correlation threshold (described as correlated com-
panions in Section III-A). Now, the nodes grouped together
based on their geographical collocation. As shown in Fig. 2,
nodes in close proximity need not always show high data
correlation. If two nodes are assumed to be highly correlated
just because they are geographically collocated, but not in
reality, the prediction accuracy will be less.

Let us take an example. In a WSN, consider nodes A and
B are located very closed to each other, but have very poor
data correlation, and nodes C and D have very high data
correlation even though they are positioned apart from each
other (Fig. 15). If geographical collocation based correlation
is assumed, node A can act as an active companion of node B.
But, the resulting data prediction would have lower accuracy.
On the other hand, nodes C and D cannot be each other’s
active companion. Now, VSF would not assume A as an
active companion of B, thus, lower prediction accuracy can be

avoided. Also, VSF can assign C as an active companion of
D, thus, significant energy savings can be achieved by keeping
node D in dormant state, while its data can be predicted
with high accuracy. In case, two close by nodes are highly
correlated (nodes C and E), both the methods will achieve
higher prediction accuracy as well as save some energy. Thus,
we can conclude that correlation based on sensed data is
superior than the geographical collocation based correlation
when data estimation is done based on the correlation.

To further prove our claim, we applied experimental com-
parison based on the IntelLab and GreenOrb datasets. The
node location for both the deployments are known. We create
cluster of nodes based on their geographical collocation, where
nodes within a cluster are assumed to be highly correlated. The
clusters are formed based on their Euclidean distance with
each other. Instead of considering a fixed number of clusters
within the network, we use different number of clusters. Thus,
the number of nodes per cluster (cluster size) is varied. We
use five different cases where the cluster sizes are equal to
10%, 20%, 30%, 40%, and 50% of the total nodes in the
network. Thus, the number of clusters in Intellab deployment
are 5, 10, 15, 20, and 25, respectively. Similarly, in GreenOrb
deployment, the number of clusters are 22, 44, 66, 88, and
110, respectively.

From Fig. 13a and Fig. 14a, we can conclude that the pre-
diction accuracy for VSF is much higher than the geographical
collocation based clustering method, as the average RMSE per
node is much lower in VSF than the cluster-based method. The
cluster-based method seems to be equivalent (or superior) as
compared to VSF in terms of the number of data packet within
the network (Fig. 13b and Fig. 14b). The reason behind this is
that cluster-based method blindly selects an active node from
a cluster and keeps the remaining node in dormant state. So,
the number of active nodes are fixed and there are only n
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TABLE IV: Performance comparison between VFS and LMS-
based method [20].

IntelLab GreenOrb
Method data

packets
tx re-
duction

error
(°C)

data
packets

tx re-
duction

error
(°C)

LMS-
based

75408 71% 0.5321 29673 69% 0.4669

VSF 4947 98% 0.3593 19547 80% 0.7107

active nodes if there are n clusters. On the other hand, VSF
assigns a node dormant if any of its correlated companion is
assigned active. As the node correlation changes over time, the
number of active nodes can also change over time. As a result,
there can be more active nodes during a certain operational
period, and thus, more number of data packets within the
network. Naturally, this ensures high accuracy of predicted
data for the dormant nodes. Please note that VSF also uses
Autocorrelation to reduce the number of data transmission.
Thus, over a long period the total number of data packets
within a network using VSF is equivalent to the geographical
collocation-based clustering (if not significantly less).

To further illustrate the data accuracy of VSF prediction
mechanism, we show cumulative distribution function of the
prediction error in Fig. 13c and Fig. 14c. From these figures,
it is clear that VSF not only achieves lower prediction error on
average, but it has a very fewer instances of high prediction
error. The prediction error is bound by a lower value, where
there is a few outliers, i.e., 95% cases prediction error is within
0.5°C. On the other hand, the geographical collocation based
clustering and prediction mechanism has a significantly high
number of instances with higher prediction error (error within
0.5°C for less than 75% of cases).

G. Comparison with LMS-based method

In this section, we compare VSF with the LMS-based sensor
data estimation method by Santini et. al [20]. The proposed
technique utilizes the inherent autocorrelation property of the
sensed data by a node. Each node possess an autocorrelation-
based predictor, and makes a decision about transmitting the
sensed data if the predictor is not able to predict the sensed
value within a tolerable error. Though this method reduces the
data transmission significantly while ensuring a high accuracy
of the estimated data, it does not utilize the cross-correlation
among the nodes. On the other hand, by utilizing cross-
correlation among the nodes along with the autocorrelation,
VSF achieves a higher reduction of data transmission within
the network. The summary of comparison between VSF and
LMS-based method is shown in Table IV.

The results establishes the fact that VSF can outperform
LMS-based method in terms of data traffic reduction, and
thus, energy consumption by the nodes. Though the prediction
accuracy for the GreenOrb deployment using VSF is a bit
lower than the LMS-based method, the prediction error is
within a tolerable error bound (1°C). A further inspection of
RMSE at the individual node level establishes the fact that the
prediction accuracy achieved by VSF is comparable with the
LMS-based method.
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Fig. 16: IntelLab dataset: Total number of data packet within
the network for VSF as compared to CDC.
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Fig. 17: GreenOrb dataset: Total number of data packet within
the network for VSF as compared to CDC.

The improvement of VSF is in terms of energy consumption
by the nodes as it was already evident from the data transmis-
sion reduction (Table IV). VSF conserves energy by not only
reducing the data transmission, but it achieves higher energy
savings by keeping the nodes in deep sleep for higher amount
of time.

H. Comparison with compressed sensing techniques

Compressed sensing based data collection techniques uti-
lizes the sparsity in the sensed data to reduce the amount
of data transmission within the network. As opposed to our
method, they do not consider correlation among the nodes.
However, compressed sensing based methods also adopt a
selective data transmission by the node, thus, they resemblance
similarity with VSF.

Liu et. al proposed a compressed sensing based sensor
data collection method, called CDC [8]. In this method, each
node transmits its sensed data with a predefined probability p.
As a result, the sink node would receive np packets (on an
average) in each sensing rounds. Finally, the whole data set
for all the nodes is reconstructed based on the partial data set
using compressed sensing. The method works based on the
assumption that the sensed data have a sparse representation
when the data collected from all the nodes are converted
to some other domain (e.g. frequency domain). If the data
sparsity is very high, highly accurate reconstruction can be
achieved with fewer samples. In that case the transmission
probability can be set to a lower value. On the other hand, if
the data sparsity is less, data reconstruction from a few samples
can lead to larger inaccuracy. Naturally, a larger transmission
probability is required so that sufficiently large samples can
be collected and highly accurate reconstruction is achieved.

We compared the performance of VSF with CDC for various
values of transmission probability (p). We tried 4 different
values of p such that the average number of samples (or active
nodes in case of VSF) are 5%, 10%, 15%, and 20% of the
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total number of nodes in the deployment. From Fig. 16 and
Fig. 17, it is clear that the prediction error for CDC is much
higher higher when there is only a few sample are used for
the reconstruction. As the number of samples increases, the
prediction accuracy for CDC also improves and goes closer
to that of VSF. But, this increases the number of data packet
transmission within the network (Fig. 16 and Fig. 17), which
will also increase the energy consumption of the network.

VI. DISCUSSION

We briefly discuss some of the trade-off while using VSF.
Since we are focusing on sensed data and predicting the
data from sensor nodes using correlations, VSF can only be
applicable for a WSN. Note that we are able predict sensed
data of any two nodes that are correlated irrespective of their
geographical location. However, this assumption holds for
nodes that are part of the same system.

Even though VSF tries to capture the dynamics of data
correlation, the prediction accuracy can drastically be affected
when the data correlation is highly dynamic. In those cases,
a smaller operational period may be more suitable. Note
that we have defined operational period in terms of number
of sensing interval (time difference between two successive
sensing) rather than absolute time. If the monitored region
in a WSN is highly dynamic, the nodes are more likely to
sense more frequently. As a result, within a small time period
many sensing events will occur and various operating states
(training, operational, and revalidation) would also change
quickly. Thus, quick correlation change would have lesser
effect on the prediction accuracy, if the correlation among the
nodes withhold during the operational period.

The suboptimal solution, using the heuristic, for selecting
the active nodes may result in choosing more than one active
companion for a particular dormant node. In such a case
selection of a particular active companion node may improve
the prediction accuracy but this needs an exhaustive search.
Furthermore, utilizing the sensed data from multiple active
companions can also improve the prediction accuracy however,
this will increase the complexity of the algorithm. Also, it
is not always guaranteed to yield higher prediction accuracy.
Thus, we adopted a simplistic approach, where only one active
companion is chosen for each dormant node at the beginning
of a operational period.

VII. CONCLUSIONS

There are many schemes and protocols to increase the
lifetime of a WSN. In this article, we introduced virtual
sensing framework (VSF), which predicts multiple consecutive
sensor data while some of the sensors remain dormant. We
have utilized the inherent correlation amongst the sensor data
without having: (i) any a priori knowledge of the statistics of
the data; (ii) location of the sensor nodes and, (iii) type of the
physical parameters observed. A case in point is predicting
temperature with a light sensor within a tolerable error bound.

The prediction technique of the virtual sensors adapts to
the changes in the sensor data. Using VSF activity reduction
technique, we have achieved a significant improvement in

energy savings compared to other similar techniques while
maintaining sufficiently high accuracy of the sensor data. Our
maximal sleeping node policy can reduce the overall energy
consumption of a WSN. However, the formulated minimum
active node selection problem is shown to be an NP-hard
problem. Thus, we provided a heuristic algorithm to find
minimum number of active nodes at any instance. We have
reported around 98% and 79% of data traffic reduction when
VSF activity reduction scheme is used on the IntelLab and
GreenOrb datasets, respectively. Our technique will be useful
when large number of sensors are deployed in near future with
the advent of Internet of Things (IoT) paradigm.
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