
SERVER ALLOCATION ALGORITHMS FOR VOIP CONFERENCING

R. Venktesha Prasad�, H. N. Shankar�, H. S. Jamadagni�, S. Vijay�

�CEDT, Indian Institute of Science, Bangalore, India.
�P E S I T, Bangalore, India and NIAS, Bangalore, India

�Esqube Communication Solutions Pvt. Ltd, Bangalore, India.
�vprasad, hsjam�@cedt.iisc.ernet.in

ABSTRACT
Real-time services have been supported by and large on circuit-
switched networks. Recent trends favour services ported on packet-
switched networks. For audio conferencing, we need to consider
many issues such as scalability, quality of the conference applica-
tion, floor control and load on the servers. In this paper, we deal
with the allocation of Conference Servers (CS) [18] that is part of an
audio service framework designed to provide a Virtual Conferenc-
ing Environment (VCE). The system is designed to accommodate
a large number of end users speaking at the same time and spread
across the Internet. The framework is based on conference servers
which facilitate audio mixing and distribution. Concurrently, we
exploit the Session Initiation Protocol (SIP) capabilities for signal-
ing purposes. We address here the problem of facilitating seamless
conference amongst participants using CSs. This demands a proper
allocation of CSs to clients to maximise the number of participants
served and at a reduced cost. This problem is popularly identified
as the Facility Location Problem, a class rich in challenges used to
model the minimisation problem of assignment of clients to servers.
Seeking a more realistic approach, we avoid over-simplifying as-
sumptions; thus the problem becomes relatively harder. Since these
problems are NP-hard, algorithms leading to approximate solutions
or those involving heuristics are commonly resorted to. We present
heuristic algorithms to solve this class of problems and bring about
the effectiveness of their performance.
Keywords: VoIP Conference, Conference Servers, SIP, Facility Lo-
cation Problem, Heuristic Algorithms
Areas:Converged communications (VoIP) service management, Dis-
tributed multimedia service management

1. INTRODUCTION

Todays Internet uses the IP protocol suite that was primarily de-
signed to transport data and provide best effort data delivery. Tradi-
tional data differ from voice and video in aspects of delay-constraints
and packet loss tolerance. Hence as time-sensitive voice and video
applications are deployed on the Internet, the inadequacy of the In-
ternet is exposed progressively. The aim is to port telephone ser-
vices on the Internet. Virtual conference (teleconference) facility is
at the cutting edge of those services. Audio and video conferencing
on Internet are popular [6] for the several advantages they offer [2].
Clearly, most collaborative works demand audio conferencing more
frequently than video interactions [7]. It makes sense to deal with
audio conferencing first; related and more involved issues need to
be tackled while supporting video.

�Author for correspondence

The bandwidth required for teleconference over the Internet in-
creases rapidly with the number of participants; reducing bandwidth
without compromising audio quality is a challenge in Internet Tele-
phony. Audio “quality” in connection with a conference includes
facilitating interactivity, i.e., allowing impromptu speech, and spa-
tialism [8, 9]. The critical implementation issues are:

1. Packet delay;

2. Echo;

3. Customized mixing of audio from selected clients [8];

4. Automatic selection of clients to participate in the confer-
ence;

5. Playout of mixed audio for every client;

6. Handling clients not capable of mixing audio streams (such
clients are known as “dumb clients”); and

7. Deciding the number of simultaneously active clients in the
conference without compromising voice quality.

In case of large number of participants, unlike a 3-party conference,
no client can be expected to handle streams from all clients. Then
intermediate servers must serve to control, maintain and support a
conference. Many of the issues listed above are closely related to
server location vis-à-vis clients and assignment of clients to servers.
Next we briefly explain the backdrop against which the problem
tackled in this paper is set.

1.1. Virtual Conferencing Environment

We devote this section to the description of the system architecture
[19, 20] in which the allocation problem is set. For details of the
architecture for VoIP conference we refer to our work in [18] and
furthered in [19, 20].

We do not restrict our conferencing system to work on small
conferences only, but rather on large audio Virtual Conference En-
vironments (VCE) that have hundreds (or even touching thousands)
of users across a Wide Area Network (WAN) such as the Internet.
This view stems from an appraisal that VCEs will gain in impor-
tance sooner than later, even as interactive audio conferences are be-
coming more popular thanks to the spread of media culture around
the world. Two issues must be taken care of when building a VoIP
conferencing system:

1. the front-end consisting of the application program running
on the end-users computers; and

2. the back-end that provides other application programs that
facilitate conferencing and conference service.

Proceedings of the First International Conference on Distributed Frameworks for Multimedia Applications (DFMA’05) 
0-7695-2273-4/05 $ 20.00 IEEE 



Participating users are grouped into several domains. These do-
mains are Local Area Networks (LANs) such as corporate or edu-
cational networks. This distributed nature asks for distributed con-
trolling and media handling solutions, as centralized systems do not
scale up for such very large conferences. More explicitly, in each
domain we can identify several relevant logical components of a
conferencing facility (see Fig. 1). An arbitrary number of end users
(clients) can take part in a conference at a time. Every user is in-
cluded in one and only one domain at a given instant, but can move
from domain to domain (nomadism). In our conferencing environ-
ment, these clients are regular SIP User Agents (SIP UAs), as de-
fined in the RFC 3261 [15]. Use of SIP helps interoperability since
SIP is the currently popular standard. These clients are thus not
aware of the complex setting that supports the conference and this
is highlighted below.

The back-end consists of two servers: (i) one SIP Server (SIPS)
per domain and (ii) one Conference Server (CS) per domain. SIPS
handles all signaling aspects of the conference (clients joining, leav-
ing, etc. [19]) while CS is for handling media packets for the clients
of the domain. Although Fig. 1 shows SIPS in each domain, there
can be only one SIPS in the entire VCE. However, one CS must
be present in each domain for handling clients. A CS selects four
streams out of all the clients in its domain and shares them with
other CSs on multicast or unicast (if multicast is not supported by
the network). In every packet interval (not more than 40ms to sup-
port interactivity) each CS selects four streams out of the several
received from other CSs and its own clients. These will be sent to
clients in its domain, often on multicast [9, 17, 20]. Usually, a SIPS
and a CS run on the same computer.

The domains and entities in a VCE as shown in Fig. 1 are not
fixed apriori. Specifically, this paper deals with the problem of
identifying the clients and CSs of domains (or forming such do-
mains) for supporting a large conference. Once a client is assigned
to a domain the control messages for conference setup and main-
tenance are between SIPS and in turn CSs. This is achieved using
‘Subscribe’ and ‘Notification’ messages provided by SIP. This is in-
cluded in outband signalling (see Fig. 2). In this paper we do not
delve into control messages and conference maintenance issues by
SIPS servers. We focus our attention on finding a configuration of
domains around possible locations of CSs; in this aspect, we seek
a suitable ‘near optimality’. The optimality is in terms of some of
the network parameters – delay, connection cost, etc. – explained in
Section 2.1.

1.2. Constraints

In the context of the foregoing on the architectural setup of the con-
ferencing environment we must identify a working model of con-
ferencing before we formally define the problem. There are some
constraints in handling a conference in the above setting. They are
listed below.

1. CSs locations are fixed.

2. CSs (these are software entities) are enabled only at such
locations and only when necessary.

3. Clients are assigned to a CS as and when conference service
is requested.

4. A client is assigned to only one CS.

5. Only one CS is opened at a location and if there is a provision
for another CS at a particular location, it is assumed to be

Fig. 2. Message flow between different entities (control and
voice paths

another location with similar parameters with respect to the
network.

The rest of the paper is organized as follows: Section 2 has
a detailed discussion on concerns in providing this service along
with the problem definition. It has, in addition, a brief note on the
possible ‘cost’ formulation. Section 3 has the proposed heuristic
algorithms. A discussion on the results comprise Section 4. We
conclude in Section 6.

2. THE ALLOCATION PROBLEM

With respect to the above architecture, the frequently asked ques-
tions are the following.

� If a client is in a remote domain, say, a dial up link, how can
that client be served?

� Should a CS be always opened in a SIPS domain or can a
client be assigned to a CS in another domain?

� With several clients in a small network neighbourhood, is it
cost effective to assign a new CS to that group?

These questions are addressed in the sequel. This distributed con-
ference system based on CS is highly scalable [9, 18, 19, 20]. But
it introduces the problem of allocating CSs to clients. We consider
choosing of CSs and CS group formation. Scalability depends on
the number of CS domains. A few CS domains cannot accommo-
date too many clients. With more CS domains, communication cost
between CSs goes as �����, where � is the number of domains.
While finding an optimum number of CSs, the costs of client con-
necting to a CS and of CS opening and maintaining are to be con-
sidered.

A conference is controlled by SIPSs which are distributed [20],
or by a centralized controller [9]. The servers can allocate CSs to

Proceedings of the First International Conference on Distributed Frameworks for Multimedia Applications (DFMA’05) 
0-7695-2273-4/05 $ 20.00 IEEE 



Clients

Clients

Fig. 1. VCE architecture showing domains, clients and servers

clients before the start of a conference if the clients in that confer-
ence are known apriori. That is, the conference is booked by a party
with a list of participants to be invited at a specific hour. In this case
allocation is done in the beginning of the conference. If clients are
successively invited to an ongoing conference, then SIPSs have to
reallocate CSs to clients. There are two ways to go about this:
(1) Only the new client is allocated to that CS which reduces the
cost;
(2) The new client is allocated to a nearest CS and periodically, all
clients are allocated afresh to CSs available, thus reducing the over-
all cost of computation.

We propose to take the second approach to avoid too frequent
changes in allocation. In VoIP conferencing, allocation of a CS to a
client implies that the client should send and receive packets to and
from that CS. This involves changing the CS address stored at the
clients. This is simple to handle because the UDP packets that carry
voice data are to be sent to a different CS address. Since UDP is not
connection oriented we may effect the change by suitably changing
the destination address in the database.

Allocation of clients to CSs in the present setting is popularly
known as the Facility Locator problem. In Operations Research,
facility location problems deal with finding the optimum number of
shops to be opened so that the total cost including opening cost of
shops and transportation cost for customers is minimised. Here this
is equivalent to CS maintaining cost and clients connecting costs.
This class of problems is known to be NP-hard [1, 4, 5].

There are three established ways of solving these problems [3].

1. Construct algorithms taking exponential time for the most
difficult instances but find the optimum fast enough for typ-
ical instances, e.g., Branch and Bound and Dynamic Pro-
gramming.

2. Heuristics provide excellent solutions very quickly if they
are admissible; however, they do not guarantee a solution.

3. Approximation algorithms relaxing the optimality require-
ment provide a solution within some factor of polynomial
time guaranteeing a reasonable running time and a good so-
lution on even the most difficult instances.

In practice heuristics run faster than the other two. The problem
in this paper (Section 2.2) does not have any known approximation
algorithm.

2.1. Cost

Before formulating the CS allocation (or location) problem, some
discussion on the cost of service will be useful. Some knowledge
of the entire network and locations of clients and CSs is necessary
for an overall acceptable assignment of clients to CSs. Hence it is
assumed here that some information of the parameters of the link
connecting clients to CSs is available. Depending on the specific
needs, the cost of connection between a client and a CS can be as-
signed in terms of number of hops (a measure of network remote-
ness), link bandwidth and cost of the physical connection. In case
the link is a leased line connecting to Internet, the cost of using that
link can also influence computation of the overall cost. Cost is not
specifically defined in the following discussion but some specific
cost based on the above parameters is adopted. Similarly, hardware
and location form the basis for computing the cost of opening a CS.
These two costs – cost of connection between a client and a server,
and cost of opening a CS – are used to find the allocation of clients
to CSs.Though the costs taken here are conceptual, the cost can also
be estimated by using explicit network measurement techniques as
in [21]. Since, in this paper, we address primarily the effectiveness

Proceedings of the First International Conference on Distributed Frameworks for Multimedia Applications (DFMA’05) 
0-7695-2273-4/05 $ 20.00 IEEE 



of our heuristic algorithms, we reserve the discussion and applica-
bility of these measurements for cost calculation for other venue.

A CS has to incur some computation for each client assigned to
it depending on whether the client is a soft client or a hard client,
the coding used by the client and whether mixing is required at the
clients. These overheads, called “demands” from clients, can be
taken as units of computation. Moreover, CSs have limited compu-
tation capacity. Further, a CS with a dedicated computation engine
such as DSP processor serves more clients than the one running on
a general purpose computer. To discourage opening of a CS at a lo-
cation, cost of opening that server can be made high. Similarly, the
cost of connecting a CS to a remote client can be made large. These
are the engineering choices that can be made while constructing a
problem instance. We have considered the most general case in this
paper to find the effectiveness of our algorithm.

2.2. Problem Formulation

Let�� � ��� �� � � � ��� be the set of �CSs situated at preidentified
locations. Let �� � ��� �� � � � � �� be the set of � clients whose lo-
cations are known. Let the cost of connecting a client � � �� to
a CS � � �� be ��� . The notion of cost follows the discussions in
Section 2.1. Let 	� , � � �� , be the demand (in the form of compu-
tation requirement, in integer units) from Client � and let 
�� � � ��
be the cost of opening CS �. Let ��, � � �� , be the limit of CS � in
number of units of computation that it can afford.

Now the client allocation to CSs can be expressed as an integer
program, with ��� and 
� as ��� integer variables. 
� � �, � � �� ,
indicates that the CS � is opened and ��� � �, � � ��� � � �� ,
implies that the Client � is assigned to CS �. The minimisation
problem (Pmin) is formulated as an integer program as

��� �

��

���


�
� �

��

���

��

���

������ (1)

subject to

��

���

	���� � ��� for each � � �� (2)

��� � 
�� for each � and �� � � ��	 � � �� (3)
��

���

��� � �� for each � � �� (4)

��� � ��� �� for each � � ��� � � �� (5)


� � ��� �� for each � � �� (6)

Constraint 2 limits the number of clients connected to a CS depend-
ing on its limit. Constraint 3 ensures that if there is an assignment
of a client to a CS then that CS must have been up and running.
Constraint 4 ensures each Client � is assigned to a CS �, � � �� and
� � �� . Constraints 5 and 6 are part of integer programming. An-
other constraint that a client is allocated to only one CS is captured
in the above constraints and hence not mentioned explicitly. This
constraint is termed ‘unsplittable’ demands in operations research
terminology. Note that the second term in (Pmin) is not multiplied
by 	� , as is usually done if facilities are shops and ��� are customer
locations to cover cost of transportation.

3. SOLUTION BY HEURISTICS

This is a hard problem since there is no polynomial solution known
[10]. There are actually two problems: (a) assigning clients to CSs
with less cost; and (b) opening least number of CSs so that there is
saving in supporting the conference service. However, the assign-
ment and number of CSs to be opened are to be found so that overall
cost is minimised. In its simplest form (where demands may be split
and with or without a limit on capacity of CSs (servers)) this prob-
lem may be solved using approximation algorithms. Some solutions
consider unit demands. When demands are splittable, i.e., they can
be met by more than one server, solutions using transhipment algo-
rithms to assign the clients are suggested. These solutions and their
variants are covered in [11, 12, 13, 14]. When the CSs have limits
and clients are to be served by one CS (unsplittable demands), it is
NP-hard to compute the minimum assignment even if the optimum
number of CSs and their locations are provided as input [14].

In this problem of allocating CSs, there are instances in which
a solution may not exist. A case in point is when the total capac-
ity of CSs is less than the total demand by clients. In these cases
heuristic algorithms definitely fail. Heuristic algorithms try to find
a near optimal solution, if there exists one. The difference between
the solution obtained using a heuristic algorithm and an optimal so-
lution (found using, say, Integer Programming (IP) formulation of
the problem) is unbounded.

3.1. Algorithms: Phase-I

The algorithm suggested here is divided into two phases. The first
one is the assignment phase. Here the clients are assigned to CSs
in set ��

� � �� . CSs only in ��
� are considered; the algorithm

considers CSs outside this set as nonexistent. In the second phase,
the number of CSs is minimised by closing some of them and clients
previously assigned to the recently closed CSs are reallocated to
other CSs. Algorithms in both phases are greedy. Algorithms of the
first phase are given below1.

Algorithm 3.1 Assignment of clients to given set of CSs (��
� )

Arrange ��� in the list �
�� in ascending order,
where � � ��� �� � � � ����. Each � corresponds to
a pair (CS �, Client �).
Consider assignment of clients to a CS as
�� ��
, a row vector that holds the CS identity
� for each Client �.
�� ��
 is zero vector to start with.
� � �. REPEAT
�

Step 1: Assign the Client � to CS � that corresponds
to � of �
�� if

� For CS �, �� � 	� , and

� Client � is not already assigned;

Step 2: �� � �� � 	� , if Client � is assigned to CS �.
Mark Client � as assigned to CS � by updating
�� ��
 � � and ��� � �.

Step 3: Stop if all clients are assigned; Return the
total assignment cost (that is,

�
���

������ and
�� ��
. Break;

1We adopt a descriptive style for presenting the algorithms with a view
to render them more reader-friendly.

Proceedings of the First International Conference on Distributed Frameworks for Multimedia Applications (DFMA’05) 
0-7695-2273-4/05 $ 20.00 IEEE 



Step 4: Return ‘����������’ if all clients are not as-
signed when 	 � 
�.

Step 5: 	 � 	 � �

�

This Algorithm 3.1 acts on the given set of CSs, ��
� , and uses

���� � matrix to assign clients to CSs. Algorithm 3.1 provides the
popular greedy solution wherein the client nearest to a CS is as-
signed first. This heuristic may give an optimal solution in some
instances, as in if there exists a Monge sequence [16].

The primary computation in this algorithm is sorting all the ele-
ments of the cost matrix ���� �. That is 
� elements. The worst case
complexity of this operation is 
���. The next step is to check
whether a client is assigned to a CS out of 
� clients. The worst
case complexity of this algorithm is easily found to be ��
����.
The advantage of this algorithm is that it is very easy to implement.
The next algorithm is an intelligent assignment solution.

Algorithm 3.2 Assignment of clients to given set of CSs (��
� )

Consider matrix ���� � wherein each row, �,
represents a CS and each column � represents
a client.
Consider assignment of clients to a CS as
�� ���, a row vector that holds
the CS identity � for each Client �.
�� ��� is zero vector to start with.

Step 1: Find ���� � ��	������ for each � � 
� .
That is, finding the CS � � ��

� that results in
minimum cost of assignment to Client �. ����’s
have the minimum cost of assigning Client � to
a CS.

Step 2: Update �� ��� � � by assigning Client �
to CS � that corresponds to the minimum cost
found as above and set ��� � �.
Note: If two positions in ���� � have minimum
value, the first one is chosen.

Step 3: Find set of CSs, � ����
� , that are overloaded

taking into account �� ��� and ��. If there are
no overloaded CSs, goto Step 7.

Step 4: Find difference matrix ���� �
where ��� � ��� � ����, � � ��

� � and � � 
� .
Mark ‘X’ in ���� � if Client � is allocated to CS �
in Step 2.

Step 5: For each CS � � �
����
� ,

for clients � � 

���
� , i.e., clients as-

signed to the CS �, find new CS-client
pair (�, �) that has the co-ordinates
of argmin���	����	�,
(i.e., position of ��	���	� over � and

�), where � � 

���
� , � � ��

� and

� �� �
����
� and CS � is able to serve

this new client without overloading itself
(��� ’s marked with ‘X’ are not to be
considered)

Step 6: If a new CS is not found in Step 5,
Return ‘Infeasible’.

Else, assign Client � to CS �, i.e., ����� � �
and �
� � �.

Subtract the load �� from CS �.
Update �� ��� and �

����
� taking into account

this change. Mark ��� , the previous position of
Client �, with ‘X’.
Repeat Step 5 till � ����

� � ��.

Step 7: Return�� ��� and cost of assignment
�

���
������ .

Heuristic Algorithm 3.2 does an intelligent selection of the CSs un-
like Algorithm 3.1. Minimum in each column of matrix ���� � is
found first. This minimum of a column is subtracted from other ele-
ments of the same column of ���� �. This forms the difference matrix
���� �. In Step 2, clients are allocated to CSs considering only the
minimum cost of connecting Client-� to Server-� from ���� � (i.e.,
the ��� �� pertaining to 
 of each column in ���� �) without checking
whether a CS is overloaded. If no server is overloaded, the assign-
ment is successful and also optimum. If not, some clients from
the overloaded CSs are to be moved to CSs that are not loaded to
their limits. This is done with the aid of ���� � matrix. Without loss
of generality, let us assume that Server-� is overloaded. Then we
find all the clients assigned to that server. Let these clients forms
a set ��. Then for all the corresponding columns of clients in ��,
find the minimum entry in ���� �. Let this correspond to the ��� ��th
entry. Now, move the Client-� to the Server-�. However, before
moving now, we take care that moving the client does not overload
the Server-�. Reassignment is done with small, hopefully least, in-
crease in cost.

The primary goal of this algorithm is in finding the minimum
element of each column of the cost matrix ���� �. That is out of 

elements. The worst case complexity of this operation is 
�. The
next step is to find the difference matrix ���� �, the complexity of
which is also of the order 
�. Now suppose that all the clients are
assigned to one server that cannot serve even one client (i.e., the
minimum demand over all clients exceeds the capacity of the CS).
Then we need to iteratively search for the minimum of �
 � ���
elements. This will continue till finding a minimum � times over
all � clients out of �
 � ��� entries. Therefore the worst case
complexity of this algorithm is evidently ��
���. We note that
the complexity has reduced by an order of magnitude. However, it
is nontrivial to code and implement this algorithm.

Remark: We cannot assert as to which one of the
above algorithms performs better than the other al-
ways. Such an assertion is clearly problem-dependent.
It is with this in view that we have proposed here al-
ternative heuristic approaches. The general strategy is
therefore to invoke the two algorithms, one after the
other, and take an allocation which is the minimum of
the two at each iteration over to the next phase.

3.2. Algorithm: Phase-II

This is the final algorithm that tries to minimise the cost of opening
the CSs. First we find an allocation of clients to the servers, and
later we try to close CSs one by one using the cost function

�� �
��

��
�
�

�

�

�

�������� (7)

This cost function takes into account the cost of operating the server
vis-à-vis its capacity (first term in Eq. 7). Later we close the Server-
� corresponding to highest ��.

Proceedings of the First International Conference on Distributed Frameworks for Multimedia Applications (DFMA’05) 
0-7695-2273-4/05 $ 20.00 IEEE 



Algorithms 3.1 and 3.2 in the allocation (assignment) phase can
be used individually or each one may be applied on an instance and
the best possible solution used. As noted above, depending on the
problem instance one algorithm may perform better than the other
in the Phase-I. These two algorithms are used to solve the problem
Pmin in this phase (Algorithm 3.3), which is our main heuristic
algorithm.

Algorithm 3.3 A heuristic solution to the problem (Pmin)

Let �
���
� ��� be a vector that represents

whether a CS is open. It is found using
client assignment vector �� ���.

�
���
� ��� �

�
� if CS � is serving any client
� Otherwise

Total cost ���� of any assignment is found
using

���� �
�
�

�
���
� ����� �

�
����

	����
�� (8)

where 	���� �

�
� if Client � is served

by CS �
� Otherwise

Note: The second sum is nothing but
�

���
���
��

Step 1: Initialise �� ��� and �
���
� ��� ��� � to zero,

��
� � �� and a set 
 � ��.

Step 2: Find�� ���� �
���
� ��� corresponding to a min-

imum ���� , after using the two Algorithms
3.1 and Algorithm 3.2 of first phase.

Step 3: Find ��� � � �� , as defined below and ar-
range in descending order.

�� �
��

��
�
�
�

�
�

	����
��

Step 4: For � � �
Do �

Temporarily close CS � that corre-
sponds to the highest ��, and � �� 

(a) Find the best ����� using Equa-
tion 8 out of two returned assignments
�� ���’s of two first phase algorithms
with ���

� � ���� as CSs open for
assignment. (Here ����� means
intermediate solution.)
If (����� � ���� )

then permanently close CS �
and ��

� � ��
� � ���;

���� � ����� ;
Recalculate �� as above with CS �
closed and arrange in descending
order;
Else, 
 � 
 � ���;
(b) � � � � �;

�Repeat till � � �;

Step 5: �� ��� of ���� corresponds to the best as-
signment found by this algorithm. The total cost
is ���� .

Algorithm 3.3 is greedy. We iteratively invoke the assignments
to the CSs which are the remaining CSs after closing some of them
using Eq. 7. This algorithm takes into account two first phase algo-
rithms and the best assignment of the assignments returned by them
is considered at each stage (see Step 2 and Step 4). There can be
many variants of this algorithm where individual or both the first
phase algorithms may be used. The complexity of this algorithm is
� times the complexity of the first phase algorithm. For example
if we use both the first phase algorithms, and taking best allocation
returned by them, the resulting complexity is ������� since Algo-
rithm 3.1 has the highest complexity. If we use only Algorithm 3.2
in Phase-I then it would be �������. Since the heuristic algorithm
does not guarantee optimal allocation always, it may be suggested
here that it is advisable to use as many algorithms as possible.

4. RESULTS AND DISCUSSIONS

Since Linear Programming (LP) formulation relaxes the constraints
that ��� and �� be integers, the solution found by LP is the best
solution. Integer LP (ILP) is hard and if there is a solution, it costs
greater than LP solution. LP formulations are complicated [14],
though not NP. It is interesting to see how Algorithm 3.3 fares for
some test samples.

We generated the test cases randomly. The cost 
�� � ��� �����
is generated arbitrarily. So also, �� � ��� �� and �� � ��� ����� are
chosen. �� are changed across test samples as per Table 1 (shown
here a sample of many test cases).

Remark: We use random inputs to test the robustness
of our algorithms. The use of triangular inequality
on the physical distance between CS and a client may
reduce the complexity of the problem. However, we
refrain from doing so as the overall cost so charac-
terized would then be necessarily blind to installation
costs and service costs in a packet switched network.
For example, two clients with different ISPs (at the
same geographic location) may be billing differently.
In general, we can see higher density of clients in geo-
graphic proximities (and hence network distance) as,
for example, conference participants in local pockets
of business centers. In these cases our algorithm con-
verges faster than the cases with random inputs.

The optimal cost of the solution (ILP formulation) for the prob-
lem (Pmin) lies between that of LP and of Algorithm 3.3. We have
solved the LP formulation using the freely available ‘lp solve’ pro-
gram for Linux OS. Table 1 shows the ratio of performance of LP
to that of Algorithm 3.3. So the difference between the solutions of
Algorithm 3.3 and ILP would be even less than what is shown in
Table 1. Table 1 is not an average value of many test samples but
tries to give an overall picture for different test scenarios.

Algorithm 3.3 is implemented in two different forms differing
in the method of assignments in the first phase. They are: (a) Al-
gorithm 3.1 alone; and (b) The better of Algorithm 3.1 and 3.2.
We have not shown Algorithm 3.2 alone in Table 1 since when we
use Algorithm 3.1 or Algorithm 3.2 alone the result varies with the
test cases. This is testimony to our earlier remarks that “it cannot
be asserted that one of the algorithms in Phase-I is preferred over

Proceedings of the First International Conference on Distributed Frameworks for Multimedia Applications (DFMA’05) 
0-7695-2273-4/05 $ 20.00 IEEE 



Table 1. Heuristic Algorithm 3.3 compared with LP solution

Number Number Range
LP

Heuristic Algorithm 3.3 Ratio of

of of of with Phase-I Algorithm(s) Heuristic
Selectors Clients ��

Solution
Algo 3.1 best of (Algo 3.1 & Algo 3.2) to LP

10 50 1-50 9707 10309 10309 1.062
10 100 1-50 13000.4 13207 13037 1.003
10 150 1-150 20439.6 22620 21155 1.028
10 500 1-500 53541.5 57047 53876 1.005
10 1000 1-1000 99698 102049 99951 1.003
10 1000 1-800 100376 112422 101813 1.014
10 1000 1-1000 105684 127217 111214 1.052
10 1200 1-1000 174134 179141 174443 1.002
12 1000 1-1000 93761.8 102985 94732 1.011

the other in all cases. Consequently it is profitable to use as many
heuristics as possible”.

The lower bound of the solution provided by the approxima-
tion algorithms for the uncapacitated facility location problem is
shown to be 1.463 times that of the optimal solution [5]. An al-
gorithm given in [12] shows an average case solution of 1.03 and
worst case solution of 1.05-1.07 as corresponding values for vari-
ous test cases, again for the uncapacitated case. Algorithms given
here are for capacitated constrained problems. Table 1 shows that
even for problems of large scale the error is comparable to the re-
sults of the uncapacitated version. It can also be seen that with
two heuristics used for assignment, Algorithm 3.3 achieves results
very close to the optimum solution compared to using Algorithm
3.1 alone for assignment (first) phase. The heuristic may not give a
solution, though one exists. Yet heuristic algorithms serve as a good
starting point to group clients. Moreover, with many heuristics the
possibility of finding a solution, when one exists, is enhanced.

Now we shall get back to the question of how these algorithms
are used in our allocation of CSs. We suggest that these algorithms
be implemented on SIPS in each domain. Once they receive infor-
mation about a new client added to the conference, the algorithm
is invoked. This requires information regarding the new column in
���� � and the demand from the new client. Since, this information
can be exchanged across SIPS while supporting the conference [19]
unique allocation can be found at every SIPS. If the conference is
booked earlier this algorithm can be used only in the beginning.

The allocation found using the above heuristics should answer
the questions raised in Section 2. Likelihood of success of allo-
cation can also be increased by some pragmatic assumptions. For
example, in case of an isolated client, the nearest CS can serve it
and multiple streams from CS to client can be mixed at that CS to
reduce the bandwidth. There are some open issues here. One such
issue concerns the method of implementing this algorithm in the
proposed distributed conference setup [20, 19].

5. SOME RELATED SOLUTIONS

There are many proposals [22, 23, 24] to handle multiparty inter-
actions in the absence of availability of multicasting in Interenet
with reliability. They usually solve this by hierarchically configur-
ing the individual nodes as relay servers (Rendezvous Peers) in the
network for distributed multicast support at the application layer.
To mention a few, End System multicast (ESM) and Overlay Peer
to Peer networks [24], (for example, jXTA [25] and Pastry [26]) try

to overcome the non-availablity of multicast support in Internet. In
a complete P2P ESM or PeerCast ESM networks [28] there can be
many Rendezvous Peers (which are some what similar to CSs of
our Architecture in functionality) between source and end nodes re-
sulting in higher latency. In our architecture, we limit only two CSs
in the voice path to have a low latency which is a necessity for in-
teractive conversations. Therefore, we need form clusters of clients
around CSs to to reduce the latency un like hierarchical Rendezvous
Peers.

Since the application here is interactive voice conferencing, we
allow upto four participants speaking at the same time [9] out of
many participants. Moreover, the set of active speakers can change
dynamically unlike Streaming/Broadcast over ESM or Overlay net-
works where predominently only one source generates streams. Thus
we need to properly identify the clusters of clients and their alloca-
tion to CSs for this application. In case of ESM networks there
are ways to balance the load on Rendezvous peers and minimize
the cost of connectivity [27, 28]. We feel that our algorithms can
be tuned and applied to work even in the ESM or Overlay network
environments since we have formulated and solved a generalized
allocation problem.

6. CONCLUSIONS

The problem considered here is a hard problem that has not been at-
tempted in literature without relaxing some of the constraints. The
heuristic algorithms presented here attempt to solve hard problems
involving (i) assignment of clients to CSs that do not have unit de-
mands and hence not solvable using transportation problem; and
(ii) reducing the total cost by opening an ‘optimum’ number of
CSs. The algorithms proposed here have been shown to perform
‘close enough’ to LP solution, thus they are nearer to the optimal
solution (i.e., IP formulation). They can be deployed easily. They
are portable to the general domain of Facility Location problems
though we have discussed here a specific case of VoIP application.

Our Algorithm is generic enough so that it can be used in more
general cases of facility locator problems as well as a host of ESM
or Overlay Network applications such as this. We have not used
measured numbers regarding the cost matrix at present. Work on
these aspects is in progress. Future directions also include a thor-
ough study of a few pilot runs on the Internet. And, tuning of
these algorithms for online applications when clients join and leave
at will as in the case of participants in a real conference hall in
quick successions.Many variants of heuristic algorithms of both the

Proceedings of the First International Conference on Distributed Frameworks for Multimedia Applications (DFMA’05) 
0-7695-2273-4/05 $ 20.00 IEEE 



phases have been worked out; these are outside the scope of this
paper.Future directions include a thorough study of a few pilot runs
on the Internet. Also, tuning of these algorithms for online applica-
tions when clients join and leave at will as in the case of participants
in a real conference hall.

7. REFERENCES

[1] “A compendium of NP optimization prob-
lems,” in (P. Crescenzi and V. Kann, eds.)”,
http://www.nada.kth.se/ viggo/problemlist/compendium.html.

[2] Amitava Dutta-Roy, “Virtual Meetings with desktop conferenc-
ing”, IEEE Spectrum, July 1998, pp. 47-56.

[3] N. Edwards, “Improved approximation algorithms for the k-
level facility location problem” PhD thesis, Cornell University,
Ithaca, NY, 2001.

[4] M. R. Garey and D. S. Johnson, “Computers and intractability.”
Freeman, San Francisco, 1979.

[5] S. Guha and S. Khuller, “Greedy strikes back: Improved facility
location algorithms,” Journal of Algorithms, vol. 31, pp. 228–
248, 1999.

[6] Lisa R. Silverman, “Coming of Age: Conferenc-
ing Solutions Cut Corporate Costs”, White Paper,
www.imcca.org/wpcomingofage.asp

[7] E. Doerry, “An Empirical Comparison of Copresent and
Technologically-mediated In-teraction based on Communica-
tive Breakdown”, PhD thesis, Graduate School of the Univer-
sity of Oregon, 1995.

[8] M. Radenkovic and C. Greenhalgh, “Multi-party distributed au-
dio service with TCP fairness”, in Proceedings of the 10�� ACM
International Conference on Multimedia (MM 02), Juan-les-
Pins, France, pp. 1120, December 2002.

[9] R. Venkatesha Prasad, “A New Paradigm for Audio Conferenc-
ing on Voice over IP (VoIP)”, Ph.D Thesis, Indian Institute of
Science, Bangalore, India, 2003.

[10] C. Papadimitriou and K. Steiglitz, Combinatorial optimiza-
tion: algorithms and complexity Prentice Hall, India, 2001.

[11] Martin Pal and Eva Tardos and Tom Wexler, “Facility loca-
tion with hard capacities,” in Proceedings of the 42nd Annual
IEEE Symposium on the Foundations of Computer Science,
2001.

[12] M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani, “A
greedy facility location algorithm analyzed using dual-fitting,”
in In Proceedings of 5th International Workshop on Random-
ization and Approximation Techniques in Computer Science,
vol. 2129, pp. 127–137, 2001. Lecture Notes in Computer Sci-
ence.

[13] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani,
“Greedy facility location algorithms analyzed using dual fitting
with factor-revealing LP,” Journal of ACM, 2002.

[14] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Analysis
of a local search heuristic for facility location problems,” ACM
symposium on Discrete Algorithms, pp. 1–10, 1998.

[15] J. Rosenberg, H. Schulzrinne et al., “SIP: Session Initiation
Protocol”, RFC 3261, IETF, June 2002.

[16] R. Shamir and B. Dietrich, “Characterization and algorithms
for greedily solvable transportation problems,” ACM sympo-
sium on Discrete Algorithms, 1990.

[17] R. Venkatesha Prasad, Joy Kuri, H. S. Jamadagni and Ravi
Ravindranath, “A Scalable Architecture for VoIP Conferenc-
ing”, in Journal on Systemics, Cybernetics and Informatics
(SCI) , Vol. 1, No. 11, 2003.

[18] R. Venkatesha Prasad, Richard Hurni, H S Jamadagni, “A
Scalable Distributed VoIP Conferencing using SIP”, Proc. of
the eigth IEEE Symposium on Computers and Communica-
tions, Antalya, Turkey, June 2003.

[19] R. Venkatesha Prasad, Richard Hurni, H S Jamadagni, “A Pro-
posal for Distributed Conferencing on SIP using Conference
Servers”, Proc. of MMNS 2003, Belfast, UK, September 2003.

[20] R. Venkatesha Prasad, Richard Hurni, H. S. Jamadagni, H. N.
Shankar, “Deployment Issues of a VoIP Conferencing System
in a Virtual Conferencing Environment”, ACM symposium on
Virtual Reality and Software Techniques, Osaka, Japan, Octo-
ber 2003.

[21] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S.
Khuller. “Construction of an efficient overlay multicast infras-
tructure for real-time applications”. Proceedings of INFOCOM,
2003.

[22] M. Castro, M. Jones, A. Kermarrec, A. Rowstron, M.
Theimer, H. Wang and A. Wolman, “An Evaluation of Scalable
Application-level Multicast Built Using Peer-to-peer overlays”
IEEE INFOCOM 2003.

[23] Y. H. Chu, S. G. Rao and H. Zhang. A Case for End System
Multicast, Proc. of ACM SIGMETRICS, June 2000.

[24] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris,
“Resilient overlay networks,” 18th ACM SOSP, Oct. 2001.

[25] Project JXTA http://wwws.sun.com/software/jxta/

[26] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems”. IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), Heidelberg, Germany, pp. 329-
350, November, 2001.

[27] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and
J. W. O. Jr. “Overcast: Reliable multicasting with an overlay
network”, Proceedings of OSDI, 2000.

[28] Jianjun Zhang, Ling Liu, Calton Pu, Mostafa Ammar, “Reli-
able End System Multicasting with a Heterogeneous Overlay
Network”, GIT-CERCS-04-19, Center for Experimental Re-
search in Computer Systems (CERCS), Georgia Tech, 2004.

Proceedings of the First International Conference on Distributed Frameworks for Multimedia Applications (DFMA’05) 
0-7695-2273-4/05 $ 20.00 IEEE 


