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Abstract

Planning collision-free paths for multiple robots traversing a
shared space is a problem that grows combinatorially with the
number of robots. The naive centralised approach soon be-
comes intractable for even a moderate number of robots. De-
centralised approaches, such as priority planning, are much
faster but lack completeness.
Previous work has demonstrated that the search can be signif-
icantly reduced by adding a level of abstraction (Ryan 2008).
I first partition the map into subgraphs of particular known
structures, such as cliques, halls and rings, and then build ab-
stract plans which describe the transitions of robots between
the subgraphs. These plans are constrained by the structural
properties of the subgraphs used. When an abstract plan is
found, it can easy be resolved into a complete concrete plan
without further search.
In this paper, I show how this method of planning can be im-
plemented as a constraint satisfaction problem (CSP). Con-
straint propagation and intelligent search ordering further re-
duces the size of the search problem and allows us to solve
large problems significantly more quickly, as I demonstrate
this in a realistic planning problem based on a map of the
Patrick Port Brisbane yard. This implementation also opens
up opportunities for the application of a number of other
search reduction and optimisation techniques, as I will dis-
cuss.

Introduction
A major aspect of solving any problem in artificial intelli-
gence (AI) is knowledge engineering, that is taking the avail-
able background knowledge about a problem and express-
ing it in a way that it can be exploited by an AI algorithm.
This task is crucial to solving any realistically large prob-
lem, including the one I address in this paper: multi-agent
path planning.

Planning for a single robot, once issues of geometry and
localisation have been addressed, becomes a simple matter
of finding a path through the road-map – the graph G rep-
resenting the connectivity of free space – between its start-
ing and goal locations. When planning for multiple robots,
however, we also need to take into account the possibility
for collisions en route. A decentralised approach in which
each robot simply planned its own path without reference to
the others would not work.

A logical solution is to treat the entire collection of
robots as a single entity and use a centralised planner to
co-ordinate them. If we again ignore issues of geometry,
this equates to finding a path through the composite graph
Gk = G × G × . . . × G, where k is the number of robots.
Each vertex in this graph is a k-tuple of vertices of G rep-
resenting the positions of each robot. Each edge represents
the movement of one robot between neighbouring vertices.
Vertices which represent collisions are excluded. A plan is
now a path between the vertex representing the robots’ ini-
tial locations to the vertex representing their goals.

It is easy to see that the size of this graph grows combi-
natorially with the number of robots. Any algorithm which
performs a naive search of the graph will soon require far too
much time and memory to complete. A common solution is
prioritised planning which gives each robot a priority and
plan for them in order, with lower priority robots integrat-
ing their plans with those of higher priority. This effectively
prunes the search space by eliminating certain possibilities
(in which higher priority robots go out of their way to allow
lower priority robots to pass). Searching this reduced space
is much faster, but the pruning may eliminate the only viable
solutions, making the algorithm incomplete.

In order to efficiently handle large numbers of robots
without sacrificing completeness we need some way to in-
corporate more knowledge about the domain. In previous
work (Ryan 2008) ] I have shown how structural informa-
tion about the road-map can be exploited to significantly
reduce search. The map is decomposed into subgraphs of
particular known structure, cliques, halls and rings, which
place constraints on which robots can enter or leave at a par-
ticular time. Planning is done at a level of abstraction, in
terms of the configuration of each subgraph and the robots’
transitions between them. Once an abstract plan has been
constructed the concrete details of robots’ movement within
each subgraph can be resolved algorithmically, without the
need for further search. This approach is proven to be sound
and complete.

In this work we extend these previous results by show-
ing how the subgraph planning process can be encoded as
a constraint satisfaction problem (CSP). With this formula-
tion, a CSP-solver can make more efficient use of the do-
main knowledge to prune the search space to a much greater
degree allowing us to solve problems significantly larger
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Figure 1: A hall subgraph.

than before. It also opens up the possibility for optimisa-
tion of plans and more complex planning tasks than simple
goal achievement.

In the next section I will describe the subgraph planning
approach in greater detail. This will be followed by a brief
introduction to constraint programming leading into the con-
straint representation of our planning problem. The effi-
ciency of this new approach will be evaluated on tasks using
a map of the Patrick Port Brisbane facility and we will con-
clude with discussion of related work and future directions.

Subgraph Planning
We can formalise our problem as follows. The road-map is
provided in the form of a graphG = (V,E) representing the
connectivity of free space for a single robot moving around
the world (e.g. a vertical cell decomposition or a visibility
graph, (LaValle 2006)). We also have a set of robots R =
{r1, . . . , rk} which we shall consider to be homogeneous,
so a single map suffices for them all. All starting locations
and goals lie on this road-map.

We shall assume that the map is constructed so that colli-
sions only occur when one robot is entering a vertex v at the
same time as another robot is occupying, entering or leaving
this vertex. Robots occupying other vertices in the map or
moving on other edges do not affect this movement. With
appropriate levels of underlying control these assumptions
can be satisfied for most real-world problems.

The road-map is partitioned into a collection of induced
subgraphs P = {S1, . . . , Sm} of known structure. In this
paper we shall consider only one kind of subgraph: the hall.
A hall is a singly-linked chain of vertices with any num-
ber of entrances and exits, as illustrated in Figure 1. They
are commonly found in maps as narrow corridors or roads
which may contain several robots but which prevent over-
taking. Formally this is represented as H = 〈v1, . . . , vm〉
with: (vi, vj) ∈ E iff |i− j| = 1.

The configuration of a hall can abstract the exact positions
of the robots and merely record their order, which cannot
be changed without a robot entering or leaving. The new
configuration created when a robot enters or leaves is based
solely on the previous configuration and the position of the
vertex by which it transitions. Resolving a step of the ab-
stract plan means shuffling the robots in the hall left or right
to either move the departing robot to its exit or to open a
space at the appropriate vertex (and position in the sequence
of occupants) and for an incoming robot to enter.

An abstract plan is thus an alternating sequence of hall

configurations and subgraph transitions. Previous work has
restricted this to a single robot transitioning on each step.
The constraint formulation I shall present in this paper al-
lows us to relax this restriction.

Constraint Programming
Constraint programming is a methodology for represent-
ing and solving combinatorial search problems through con-
straint propagation and intelligent search. Problems are rep-
resented as collections of variables over finite domains (usu-
ally subsets of the integers) and constraints which are rela-
tions between the variables that they are required to satisfy.
Constraint solvers are designed to represent a large num-
ber of different constraints and use them to propagate infor-
mation from one variable to another so that their domains
are consistent (with some degree of strength) with the con-
straints between them.

Combining constraint propagation with search, we are
able to prune the search space of a problem by alternately
assigning values to variables and propagating the change to
restrict the domains of other unassigned variables. Informed
choice of the search order can maximise the benefits of prop-
agation and further reduce the search. For this project I used
Gecode/J – a Java-based constraint solver (Gecode Team
2006).

The Constraint Representation
To convert the planning task into a constraint satisfaction
problem we need to describe it as a finite set of integer vari-
ables. As it stands the task is open ended: a plan can be of
any length. To make it finite we need to restrict the plan to a
fixed length. If a plan of a given length cannot be found, then
a new CSP representing a longer plan can be constructed and
the process repeated.1

To begin our representation we number each vertex, each
robot and each subgraph. Let V = {1, . . . , n} repre-
sent the vertices, R = {1, . . . , k} represent the robots and
S = {1, . . . ,m} represent the subgraphs. Let Vi be the set
of vertices for subgraph i. It is useful, as we will see later, to
number the vertices so that each Vi contains consecutive in-
tegers. Let E = {(a, b) | ∃va ∈ Va, vb ∈ Vb, (va, vb) ∈ E}
be the relation defining adjacency between subgraphs. Let
L be the length of the abstract plan.

Abstract plan steps
We can now define the variables we need. For each robot
r ∈ R and each step of the plan i ∈ {1 . . . L} we have three
variables:

Ai[r] ∈ S is the index of the subgraph occupied by r at
step i,

Fi[r] ∈ V is the index of the first vertex occupied by r at
step i,

1Note that this makes the problem only semi-decideable. There
is no sure way to know when no possible plan of any length exists.
In practice, this is rarely a problem. Planning stops when plans get
beyond a certain maximum length.
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Ti[r] ∈ V is the index of the last vertex occupied by r at
step i.

The first of these variables tells us which subgraph the robot
occupies in that step of the plan. It is also important to know
the vertices at which the robot enters and leaves the sub-
graphs (the second and third variables respectively) as they
will affect the possible configuration of the subgraph.

We constrain these variables as follows:

Robots can only move between neighbouring subgraphs.

Ai[r] 6= Ai+1[r]→ (Ai[r], Ai+1[r]) ∈ E (1)

Fi[r] and Ti[r] must belong to the given subgraph.

Ai[r] = a→ Fi[r] ∈ Va (2)
Ai[r] = a→ Ti[r] ∈ Va (3)

Two robots cannot be in the same vertex at the same
time.

distinct(Fi[1], . . . , Fi[k]) (4)
distinct(Ti[1], . . . , Ti[k]) (5)

Consecutive sub-plans are linked by valid transitions.

(Ti[r], Fi+1[r]) ∈ E (6)
Ti[rx] 6= Fi+1[ry],∀rx 6= ry (7)

No-ops only occur at the end of the plan.

(∃r ∈ R : Ai[r] 6= Ai+1[r])→
(∃r ∈ R : Ai−1[ry] 6= Ai[r]) (8)

If a subgraph is full, its occupants cannot move.

Ai[r] = a ∧ countρ∈R(Ai[ρ] = a) = |Va| →
Fi[r] = Ti[r] (9)

These constraints apply to any abstract plan, regardless
of the structure of its subgraphs, but they fail to completely
specifiy the problem. In particular, they do not guarantee
that the configuration given by (Ti[1], . . . , Ti[k]) is reach-
able from (Fi[1], . . . , Fi[k]). To ensure this we must refer to
the particular properties of the subgraphs.

Hall ordering
In the case of the hall subgraph, we require that the order of
robots in the hall does not change between transitions. If rx
is on the left of ry at the beginning of a sub-plan it must also
be so at the end (and vice versa). We can represent this more
easily if we number the vertices in the hall consecutively
from one end to the other. Then for two robots in the hall,
we will require Fi[rx] < Fi[ry]⇔ Ti[rx] < Ti[ry].

It will be useful in the search for a plan to be able to ex-
plicitly choose an ordering between two robots without as-
signing them to particular vertices. To this end, we create
a new set of variables to represent the ordering of robots in
each sub-plan: Ordi[rx, ry] ∈ {−1, 0, 1}. Conveniently we
can use one set of variables to describe the configuration of
all halls simultaneously, since the value is only important if
two robots are in the same subgraph at the same time. If

rx and ry are in different subgraphs, then Ordi[rx, ry] is 0.
Otherwise it must be either -1 or 1, indicating the two possi-
ble orderings: rx before ry or ry before rx.

Formally we add the following constraints:

Robots are ordered iff they are both in the same hall.

Ai[rx] ∈ H ∧ Ai[rx] = Ai[ry]⇔ Ordi[rx, ry] 6= 0 (10)

Ordering variables affect concrete positions.

Ordi[rx, ry] = −1→
Fi[rx] < Fi[ry] ∧ Ti[rx] < Ti[ry] (11)

Ordi[rx, ry] = 1→
Fi[rx] > Fi[ry] ∧ Ti[rx] > Ti[ry] (12)

Ordering variables persist across subplan transitions.

Ai[rx] = Ai+1[rx] ∧Ai[ry] = Ai+1[ry]→
Ordi[rx, ry] = Ordi+1[rx, ry]

This completes our description. Any abstract plan which
satisfies these constraints can be resolved into a correct con-
crete plan without further search.

Search
Constraint propagation alone will not solve this problem;
the constraints are not powerful enough to eliminate every
wrong solution. We must also perform a search, experimen-
tally assigning values to variables until a complete plan is
found that satisfies all the constraints. By enumerating all
the variables at the outset, we are able to assign values to
them in any order we wish, unlike standard path-planning
algorithms which generally operate in forward temporal or-
der only.

Common wisdom in constraint solving is to assign vari-
ables so that failures, if they are going to occur, happen early
at shallow levels of the tree so that large amounts of back-
tracking are avoided. The standard heuristic is to assign the
most constrained variables first. In this particular problem
it makes sense to assign the subgraph variables Ai[r] first,
followed by the order variables Ordi[rx, ry] and finally the
transition variables Fi[r] and Ti[r], since each is strongly
constrained by the one that comes before. In each case we
choose the variable with the smallest domain.

When choosing a value for the variable there are two
things to consider: 1) choose a value which is most likely to
lead to a solution, 2) choose a value which places the least
constraint on other variables. When choosing subgraph val-
ues for the Ai[r] variables we apply the first principle by
choosing the subgraph which is closest to the next assigned
subgraph for robot r (based on a precomputed single-robot
all-shortest-paths matrix). If there are two such options, then
the subgraph with the fewest occupants is selected, accord-
ing to the second principle.

The heuristic for selecting the ordering value for
Ordi[rx, ry] is to consider the concrete values that it im-
mediately affects Fi[rx], Ti[rx], Fi[ry] and Ti[ry]. For each
ordering we can easily compute the resulting domain sizes
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Figure 2: The map of the Patrick yard at Port Brisbane.

for each of these variables (ignoring the effect of any other
constraints). The ordering which leaves the largest number
of alternatives is preferred, by the second principle above.

Finally, values for the concrete steps Fi[rx] and Ti[rx] are
chosen to minimise the distance between the beginning and
end of the plan step.

Experiment: The Patrick Port

To evaluate this new planning system I have applied it to
a realistic planning problem. Figure 2 shows a map of
the Patrick yard at Port Brisbane in Queensland, Australia.
This map is used to plan the movement of straddle-carriers
– enormous, automated vehicles for moving shipping con-
tainers around the yard. Efficient, co-ordinated planning for
these vehicles is important for the smooth running of the fa-
cility.

The problem domain
The map is an undirected graph of 1808 vertices and 3029
edges. The vertices are naturally connected in long straight
chains representing the roads around the facility. These
roads mean that the vertices can be partitioned into 40 hall
subgraphs, with only 2 vertices left over, which must be
treated as singletons. The reduced graph has 187 edges con-
necting neighbouring subgraphs.

This reduced graph was constructed by hand with the aid
of a simple interactive tool. Choosing the partition was not
difcult; the roads around the port are obvious in the map and
provide a natural set of halls. No effort was made to optimise
this partition in any fashion to suit the algorithm.

Approach
The map was populated with a number of robots which var-
ied from 1 to 40. Each robot was assigned a random ini-
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tial and final position. A single-robot shortest paths matrix
was calculated for the reduced graph and used to calculate
the minimum length of the plan as the length of the longest
single-robot plan.

A constraint problem was constructed in Gecode/J as de-
scribed above. The initial and goal states were constrained
to their appropriate values and then a search was conducted.
An iterative deepening approach was used. A minimum es-
timate of the plan length was computed by taking maximum
shortest path distance for each robot individually. If a plan
of this length could not be found, then the length was incre-
mented and the search repeated, until a solution was found
or the planner exceeded a 2 minute time limit.

The same problems were also solved with a prioritised
planner (also encoded as a CSP in Gecode/J). I compare the
results below.

Results
One hundred different experiments were conducted for each
number of robots.2 The results are plotted in Figures 3(a)
and 3(b). The graphs show the median values for total time
to construct the CSP and search for a solution and the to-
tal memory usage, with whiskers showing the rst and third
quartiles. Experiments were run with a time limit of 120
seconds and a maximum heap size of 2 gigabytes. Experi-
ments which exceeded these limits are treated as taking infi-
nite time and memory.

The difference between the two approaches is quite pro-
nounced. The abstract approach shows a much slower rate of
increase in both runtime and memory. Performance is com-
parable for up to 4 robots, but after that point the abstract
approach is clearly superior. At 33 robots the graph of the
prioritised planner ends because it began to fail more than
50% of the time. The abstract planner was able to handle up
to 40 robots, taking only slightly more than 10 seconds in
the median case.

There is a noticeable change in both the time and memory
graphs around the point of 15 or 16 robots. The explanation
for this threshold can be found in the subplan sizes. Because
of the high connectivity of the graph, two subgraphs ran-
domly chosen can almost always be connected by at most
one intermediate subgraph. The probability that more than
one is required is small, approximately 4%. As more robots
are added to the plan the probability increases that at least
one will require a longer plan. The probability reaches 50%
about the 15-16 robot mark. So at this point the majority of
experiments begin with a plan of 4 abstract steps, while a
majority of the smaller problems require only 3. The longer
plan requires more variables per robot to represent and thus
more time and memory to complete.

Analysis of median values doesn’t give us the full picture.
Table 1 shows the number of experiments which failed to
complete due to time or memory limits. Many more priori-
tised experiments failed (23% in total) than abstract exper-
iments (only 1%). In most cases failure occurred because
the experiment exceeded the time limit. As stated earlier,

2Running times were measured on a 3.20GHz Intel(R)
Xeon(TM) CPU running Sun JDK 6.0 with 2Gb of heap.

Robots % Failures # Robots % Failures
Abs. Pri. Abs. Pri.

7 0 1 24 1 25
8 0 1 25 0 26
9 0 2 26 2 28

10 0 2 27 0 29
11 0 5 28 0 43
12 0 3 29 2 34
13 0 6 30 3 46
14 0 10 31 4 29
15 0 13 32 4 33
16 0 6 33 4 48
17 1 11 34 2 59
18 1 19 35 1 54
19 0 16 36 7 54
20 2 14 37 3 58
21 0 17 38 9 64
22 0 11 39 7 63
23 0 29 40 6 78

Table 1: Number of failed experiments by problem size. Ex-
periments 1 to 6 showed no failures for either approach.

constraint-based planning is only semi-decidable, so there
is no way to definitely conclude that a problem has no so-
lution, but the data suggests that the incompleteness of the
prioritised algorithm may be the issue.

Conclusion
I have demonstrated how the multi-robot path planning
problem can be effectively solved for large numbers of
robots by making use of appropriate structural knowledge
about the map, in the form of a subgraph decomposition.
This knowledge can be encoded precisely as a constraint
satisfaction problem and solved using a combination of con-
straint propagation and heuristic search. This allows us to
solve problems of unprecedented size, using time and mem-
ory that is significantly smaller than the standard approach
of prioritisation.

Related work
There has been little previous work in the use of abstrac-
tions and modern search techniques in multi-robot path
planning. The work that bears most similarity to my own
is not explicitly in robot path planning, but in solving
the Sokoban puzzle (Botea, Müller, and Schaeffer 2003;
Junghanns and Schaeffer 2001). Their division of a map
into rooms and tunnels matches to some degree the subgraph
decomposition I adopt here. The particular structures they
represent are different, but the general ideas of partitioning
into independent local subproblems and identifying abstract
states from strongly connected components, are the same as
those employed in this work. They have not as yet attempted
to translate these structures into a formal constraint satisfac-
tion problem.

CSPs have however been applied to a different kind of
planning, that is AI task-planning. CPLan (van Beek and
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Figure 3: A comparison of median run-times and memory usage for abstract planning and prioritised planning. Error bars show
the first and third quartile.

Chen 1999) directly encodes such planning problems as con-
straint systems and uses a general purpose constraint solver
to find plans. Another approach is to encode the planning
graph from an algorithm such as Graphplan (Blum and Furst
1997) and convert it into a CSP, as done in the work of Do
and Kambhampati (Do and Kambhampati 2001) and Lopez
and Bacchus (Lopez and Bacchus 2003). A related approach
is the ’planning-as-satisfiability’ technique used in planners
such as SatPlan (Kautz, Selman, and Hoffmann 2006).

Future work
This constraint-based approach opens the door to a number
of new possibilities. More complex planning problems can
be expressed by adding appropriate constraints to the sys-
tem. If we extended the representation to include variables
for the concrete sub-plans in their entirety, we could add ex-
tra constraints to prevent certain vertices from being simul-
taneously occupied, to add a buffer zone between robots. We
could specify goals that involve visiting several locations in
sequence. It is already possible to have robots that have no
particular goal but to stay out of the way.

If we add variables representing the lengths of the con-
crete plans, we can begin to work on optimisation. As
it stands, the algorithm makes no guarantees that concrete
plans will be optimal. Finding perfectly optimal plans is
likely to be very time consuming, but a branch-and-bound
algorithm could provide a viable alternative, yielding the
best plan found in the available time.

This leads us to consider what other advanced CSP-
solving techniques could be useful. The most immediately
obvious is sub-problem independence (Mann, Tack, and
Will 2007). Once the A[[i]][r] variables have been set, the
other variables in this problem are partitioned into a number
of subsets which do not affect each other. Solving these sub-
problems independently could prevent a lot of unnecessary

backtracking.
In conclusion, this paper demonstrates the successful

combination of domain knowledge and intelligent problem
solving tools. It offers not just a fast planning algorithm,
but also a validation of constraint programming as an effec-
tive knowledge engineering methodology, and one which we
should continue to improve upon.
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