
Stackelberg equilibrium in robot platooning∗

Arnaud Canu and Matthieu Boussard and Abdel-Illah Mouaddib
GREYC (UMR 6072), Université de Caen Basse-Normandie,

Campus Côte de Nacre, boulevard du Marchal Juin
BP 5186 - 14032 Caen CEDEX, FRANCE

Abstract

We describe a formalism for robot platooning, based on
the adaptation of flocking rules in the Vector-Valued
Decentralized Markov Decision Process (shortly 2V-
DEC-MDP) framework. After a reminder on stochas-
tic games, we will prove the conditions under which the
agents follow a Stackelberg equilibrium. This leads to
the adaptation of the initial value functions of the 2V-
DEC-MDP, in order to reach this property. Experimen-
tal results compare the initial framework with the Stack-
elberg equilibrium according to the quality of the solu-
tion and the complexity criteria.

Introduction
Multiagent planning has been widely studied. More particu-
larly, planing under uncertainty allows to represent problems
where actions’ outcomes are uncertain. For those problems,
and for a single agent, Markov Decision process (MDP)
(Puterman 1994) framework allows the agent to maximize
its expected reward of any state and derive an optimal pol-
icy. DEC-POMDP framework (Bernstein, Zilberstein, and
Immerman 2000) has been designed for the same purpose in
multiagent settings. Although DEC-POMDPs can find opti-
mal policies, their complexity for the general case is so high
that it is hard to deal with some real applications. When
dealing with 50 agents, even the algorithms for finding ap-
proximate policies of DEC-MDP can’t compute satisfying
policies. Some sub-classes can deal with problems of this
scale (Becker et al. 2004), but their expressiveness is re-
duced for the problem of coordinating a fleet of robots. The
2V-DEC-MDP have been introduced to coordinate a large
number of agents, extending the MDP framework, by con-
sidering local interactions with local full observability.

We are starting here with a concrete problem, namely
robot platooning (Michaud et al. 2006), where the goal is
to build and to maintain a formation for a group of mobile
robots from a starting point to a goal. We will look at the
particular problem of agents who aim to organize themselves
according to a line shape, but our formalism could easily be
adapted to other shapes. Thus, we propose here a solution to

∗The authors would like to thank the DGA (Direction Générale
de l’Armement) for supporting this work.

make those kind of platoons. We are considering that envi-
ronment has unpredictable properties so actions have nonde-
terministic effects (for example, an agent can skid on a wet
ground). We aim at finding a fully decentralized approach,
with no communication (hostile area). Those kind of prob-
lems have been studied with flocking approach, where the
agents have to maintain a global shape thanks to few sim-
ple local basic rules. So we want to merge 2V-DEC-MDP
properties with the flocking ones.

Stochastic games theory (Shapley 1953) is a formalism
for situations where an agent’s reward do not only depends
on the action it does but on the actions of all the agents. Our
problem could easily be formalized by a Stachastic game,
especially by using a Stackelberg equilibrium (a situation
where the leader of the group acts knowing that its actions
influence all the group). Moreover, we could easily formal-
ize such a Stochastic game by using a 2V-DEC-MDP and
then compare a 2V-DEC-MDP using a Stackelberg equilib-
rium to a 2V-DEC-MDP not using any equilibrium.

This paper is organized as follows: first, we remind the
basic of the flocking and 2V-DEC-MDP framework. Then,
we reformulate the flocking rules with a 2V-DEC-MDP.
Then we use stochastic games theory in order to compare
the 2V-DEC-MDP quality to the one of agents following
a Stackelberg equilibrium. We show under which assump-
tion the 2V-DEC-MDP leads to a Stackelberg equilibrium,
so that we propose new 2V-DEC-MDP value function ac-
cording to those assumptions. We finish by showing exper-
imental results comparing the quality and the complexity of
the initial 2V-DEC-MDP to the one of Stackelberg equilib-
rium.

Flocking
Flocking rules (Reynolds 1987) are a set of three very simple
rules describing the behaviour of the agents. Those rules
are :

1. Cohesion : steer to move toward the average position of
local flockmates,

2. Separation : steer to avoid crowding local flockmates,
3. Alignment : steer towards the average heading of local

flockmates.
Despite the simplicity of those rules, agents manage to main-
tain the shape of the group. The main advantage of this ap-

ICAPS'08 Multiagent Planning Workshop

Figure 1: Flocking rules: (1) cohesion, (2) separation, (3)
alignment

proach is that it is fully decentralized, with no communica-
tion at all.

In our formalism, we describe platooning as a particular
form of flocking, where agents try to maintain a line shape
and to move toward the platoon’s objective (in this line, each
agent has the same orientation as the previous agent if it is
possible, and the leader heads to the objective. The global
shape will then be a straight line or, if agents do not have
enough space, a broken straight line). This can be done by
giving particular flocking rules to each agent:

1. Cohesion : steer to wait for agents behind it,

2. Separation : steer to avoid agents in front of it,

3. Alignment : steer to move toward the near agent in front
of it, or toward the objective if no one is in front of it.

By using those flocking rules into a 2V-DEC-MDP, we want
the agents to maintain the group’s shape, and also to act con-
sidering the uncertainty on the outcome of the actions.

Vector-Valued DEC-MDP
In (Boussard, Bouzid, and Mouaddib 2007; Mouaddib,
Boussard, and Bouzid 2007), the Vector-Valued Decentral-
ized Markov Decision Process (2V-DEC-MDP) framework
has been proposed to coordinate locally the actions of a
group of agents. It is based on MDP (Puterman 1994) with
an online coordination part. Assuming without loss of gen-
erality that all agents are identical, a 2V-DEC-MDP is a set
of 2V-MDP, one per agent. A 2V-MDP is composed by an
off-line part, an MDP, and an on-line part to adapt its actions
with the other agents.

The MDP is a tuple 〈S,A, P,R〉, with:

• S a set of states,

• A a set of action,

• P : S ×A× S → [0; 1], the transition function,

• R : S×A×S → R, the reward function which expresses
both positive reward for goal states and negative reward
for hazardous states.

For the optimality criteria, we use an expected reward on a
finite horizon T . The optimal value function V ∗ of a state is

defined by:

V ∗(s) = max
a∈A

(R(s, a) +
∑
s′∈S

P (s, a, s′) · V ∗(s′)),∀s ∈ S

A policy is a function π : S → A, the optimal policy is a
policy π∗, such that:

π∗(s) = argmaxa(R(s, a)+
∑
s′∈S

P (s, a, s′)·V ∗(s′)),∀s ∈ S

We define the neighborhood for an agent i as the set of
states of (detected) agents who can interact with i. Until
now, we assumed that all the agents near enough (accord-
ing to a fixed maximum distance d) could be detected and
their states could be known. Taking into account partial ob-
servability will be the subject of some future works. If the
neighborhood is too big, it can be restricted to a subset (the
more the neighborhood will be big and the more the policy
will be good but the more the computation of this policy will
take time).

The on-line part of a 2V-MDP is built with the computa-
tion of local social impact, according to local observations.
The functions for computing the value of the impact on the
group are:
• ER for the individual reward (the value of the optimal

policy of the MDP),
• JER for the group interest,
• JEP for the negative impact on the group.
Using those functions, the agents will use a LexDiff oper-
ator to choose the policy (i.e. the best action) to apply.
LexDiff build a vector (ER(πi), JER(πi), JEP (πi))

for each policy πi and normalize each values vector vi =
(v1
i , v

2
i , v

3
i) to a utilities vector vu = (v1

u, v
2
u, v

3
u). LexDiff

then permute those utilities vectors so that each vector
(v1, v2, v3) be such as: v1 ≥ v2 ≥ v3. The best vector
is then founded by a lexicographic order: for two vectors
va = (v1

a, v
2
a, v

3
a) and vb = (v1

b , v
2
b , v

3
b), we choose va if

v1
a > v1

b and vb if v1
a < v1

b . If v1
a = v1

b , we compare v2
a and

v2
b , and so on.

Thanks to this design, the DEC-MDP is expressed as a
set of 2V-MDP, allowing the coordination problem to be
tractable. In (Boussard, Bouzid, and Mouaddib 2008), ER
JER and JEP have been defined for platoon emergence,
but this work does not try to keep the shape of the platoon.
So we are interested here to use flocking rules in this frame-
work to built the platoon and also to keep platoon’s shape.

Flocking as a 2V-DEC-MDP
We use 2V-DEC-MDP to formalize our problem, by trans-
lating the three criteria into three formulae (each formula
having one or more equations) which will parameterize each
2V-MDP. We consider ER as the alignment criterion, JER as
the cohesion criterion and JEP as the separation criterion.

Notations
• sji is the state j of agent i (the environment being reduced

to a discrete set of possible positions, a state is one posi-
tion of this set and one orientation),

ICAPS'08 Multiagent Planning Workshop

• −→s = (s1, . . . , sN) is the joint state vector,

• face(s) gives all the agents the are closer to the objective
than s,

• distance(s1, s2) gives the number of actions needed to
go from s1 to s2,

• angle(s1, s2) gives the angle between the orientation of
s1 and the one of s2. We have:

angle(s1, s2) =
‖orientations1 − orientations2‖

anglemax

• back(s) gives the next place available behind s (if s1, the
location just behind s according to the orientation of s, is
available, we return s1. If it is not available, we return
back(s1)).

So now, using those notations, we can write the formulae for
ER, JER and JEP int the platooning context:

ER: Alignment

ER(s, a) =
∑
s′∈S

p(s, a, s′)ERi, i = 1, 2, 3

Depending on the situation, ERi are defined by:

ER1 = V ∗(s′)

ER2 = − min
sj∈face(s′)

(distance(s′, sb1) +
angle(s′, sb1)
anglemax

)

ER3 = −(distance(s′, sb2) +
angle(s′, sb2)
anglemax

)

where sb1 = back(sj), sb2 = back(leader) and V ∗(s)
a function of the distance between s and the objective of
the platoon. distance(s1, s2) gives the cost of going from
s1 to s2 and angle(s1, s2) gives the cost of rotating from
the orientation of s1 to the one of s2. Thus, we add in those
equations two cost: we look for the cost of going from a state
s1 to a state s2, wich means the cost of reaching the position
of s2 AND rotating to the good orientation. We divide the
angle by the maximum angle, because we want to be sure
that the cost of the distance will always be bigger than the
cost of the angle, so the agent will not choose to stay on a
distant place for saving the cost of a rotation. In ER2 and
ER3, we use back(target) instead of target, because the
agent wants to go behind its target.

An agent does not have the same objectives whether it
is on a leader position or inside a platoon. Indeed, a leader
will move in the direction of its objective, while a non-leader
agent will follow the one in front of it. Hence, an agent have
to choose which equation to follow before resolving its 2V-
MDP.

So, if the agent is a leader, or if it is out of range of any
platoon, it choosesER1. If it is inside a platoon but it knows
that the leader is behind it, it chooses ER3. Finally, if it
is inside a platoon and have no leader behind it, it chooses
ER2.

JEP : Separation

JEP (s, a) =
∑
s′∈S

[p(s, a, s′)·
∑
sj∈D

(
|Aj |∑

ak
j ,k=1

p(sj , akj , s
′)·C)]

Where D is the set of states of detected agents in neigh-
borhood and C a constant equal to the cost of a collision
between two agents.

JER: Cohesion
JER(s, a) =

∑
s′∈S

(p(s, a, s′) ·K(s′))

Where K(s) is the function which estimate the gain of a
given situation for the group. K(s) gives a reward if at least
one agent is behind s.

After choosing an equation for the ER criteria, the agent
has to fix the weight of ER, JER and JEP . For a leader,
we set wJEP to 0 since the criterion is with no sense for it
and, typically, wER to 0.49 and wJER to 0.51. For a non-
leader, wJEP = 0.35, wER = 0.32 and wJER = 0.33 (ex-
cept if a leader is detected behind the agent, in which case
wJER = wJEP = 0, and wER = 1). Finally, for any agent,
wJER = 0 as soon as it is near to the objective of the pla-
toon. Experimentations proved that values of those weights
do not change anything on the behavior of the agents. The
only important thing is the order of those weights: the most
important criteria has to have the biggest weight, the second
criteria has to have the second weight, etc., so we choose
arbitrary values for those weights.

Stochastic games
We introduce in this section stochastic games approach
which is able to solve similar problems than our approach
and it will be used as a basis to compare the performance of
our approach.

A stochastic game (Shapley 1953) is defined in (Chaib-
draa 2005) by a tuple 〈N,S,A,R, T 〉, where:

• N is the number of agents taking part in the game,

• S is the set of states in which the game can be (a state of
the game describing the state of the world and of every
player/agent),

• A = {A1, A2, . . . , AN} the set of possible actions for
every agent, where Ai is the set of actions for agent i
(Ai =

{
a1
i , . . . , a

|Ai|
i

}
),

• R = {R1, R2, . . . , RN} the set of reward functions of
every agent such as, for a given agent i, we have Ri :
S ×A1 × . . .×AN → R,

• T represent the transition’s model between states, ac-
cording to the joint actions of the agents. We have T :
S ×A1 × . . .×AN × S → [0, 1].

At each step, each player chooses an action based on its ac-
tual state and its policy. The game then moves to a new state
s′. The i-agent’s policy, noted πi, might be of 2 types: if the
player follows a pure strategy, we will have πi : S → A but

ICAPS'08 Multiagent Planning Workshop

if the player follows a mixed strategy, we will have a proba-
bilities distribution on states (πi : S → [0, 1]|Ai|). The joint
policy for every agent of the game is −→π = (π1, . . . , πN).

To estimate a strategy’s value, it is necessary to know the
utility for a given player to follow a given strategy. Let write
π1(s) the chosen action by applying the π1 policy on the
state s. We can then write

−−→
π(s) = (π1(s), . . . , πN (s)) the

joint policy for this state. In this game, every agent i has
(by definition) an immediate utility usi (

−−→
π(s)). We can write

usi (
−−→
π(s)) = Ri(s,

−−→
π(s)) and we will be able to calculate

U
−−→
π(s)
i (s) the expected utility for an agent i if, in a state s,

every agents apply the joint policy −→π :

U
−→π
i (s) = usi (

−−→
π(s)) + β

∑
s′∈S

T (s,
−−→
π(s), s′) · U

−→π
i (s′)

In a game, a Stackelberg equilibrium (Stackelberg 1952;
Könönen 2003) is a situation where the leader of a group
knows that it is the leader. It makes decisions, and its follow-
ers estimate BR the best response (e.q. the best decision) to
apply, according to this decision. The leader can then esti-
mate what reactions will the other agents have, and makes
the decision which will bring him the best reward, relative
to those reactions. If the objective of the leader is to maxi-
mize the group’s reward, it will make the decision witch will
bring the best reward to this group.

A Nash equilibrium is a situation in which no agent can
change its action without reducing its reward. In (Chaib-
draa 2005), they described how a Nash equilibrium can be
adapted to a stochastic game. By the same way, let define
the Stackelberg equilibrium for a stochastic game. First, let
BRj(πi) be the set of best policies πj for j, knowing that i
apply the policy πi, and

−−→
BR = (π1 ∈ BR1(π∗i), . . . , πN ∈

BRN (π∗i)). If, for every state s ∈ S, the leader’s policy
π∗i (i being the leader agent) respects Eq.1, then we have a
Stackelberg equilibrium.

min−−→
BR

U
π1,...,π

∗
i ,...,πN

i (s) = max
πi

(min−−→
BR

Uπ1,...,πN

i (s)) (1)

Stackelberg equilibrium in 2V-DEC-MDP
In order to compare our formalism to the Stackelberg equi-
librium, we aim to find when a 2V-DEC-MDP leads an agent
to follow such an equilibrium.

Remainder on the leader’s behavior
We call a leader any agent that is in the front of the platoon,
whether if it had been indicated or not. It’s behavior is de-
picted by those equations:

ER(s, a) =
∑
s′∈S

(p(s, a, s′) · V ∗(s′)) (2)

JEP (s, a) =
∑
s′∈S

[p(s, a, s′) ·
∑
sj∈D

(p(sj , aj , s′) · C)] (3)

JER(s, a) =
∑
s′∈S

(p(s, a, s′) ·K(s′)) (4)

Let L be the leader, then the utility function of this leader is
for a policy π and a state s:

UL(s) =
LexDiffπL

(ER(s, πL(s)), JER(s, πL(s)), JEP (s, πL(s)))
The agent will then use the πL chosen by LexDiff .

Detecting Stackelberg equilibrium
Theorem 1. An agent using a 2V-MDP is following a Stack-
elberg equilibrium, if and only if each criterion leads to a
Stackelberg equilibrium.

Proof. We aim to show that each criterion leads to a Stackel-
berg equilibrium if and only if applying LexDiff on those
criteria leads to a Stackelberg equilibrium.

Here, the agent’s policy is build on the fly by LexDiff :
for each state, this operator choose the action the agent will
apply. Because the Stackelberg equilibrium definition says
that a leader is in equilibrium if and only if it follows Eq.1
for each state s, we just have to show that the LexDiff
equation is equivalent to Eq.1 for every state.

Let c be a criterion and Qc(s, πi(s)) be the utility for
agent i to apply its policy π when it is in the state s, ac-
cording to c. If we assume that each criterion c leads to a
Stackelberg equilibrium, then we can write:

min−−−−−→
BR(π∗L)

Qc(s, π∗L(s)) (5)

= max
πL

(min−−−−−→
BR(πL)

Qc(s, πL(s)))∀Qc ∈
−→
Qcriteria (6)

↔ min−−−−−→
BR(π∗L)

[
min

Qc∈
−→
Qcriteria

Qc(s, π∗L(s))

]
(7)

= max
πL

[
min−−−−−→

BR(πL)

(min
Qc∈
−→
Qcriteria

Qc(s, πL(s)))

]
(8)

And, we know thatLexDiff seeks the action which min-
imizes the biggest regret. Moreover, minimizing regret rela-
tive to a criterion is equivalent to maximizing utility relative
to this criterion. We can then reformulate LexDiff like an
operator which seeks the lowest utility maximizing action.
In other words, because we work at horizon 1, we have:

Uπ1,...,πN

L (s) = LexDiffπL
(
−→
Qcriteria)

= max
πL

[
min

Qc∈
−→
Qcriteria

Qc(s, πL(s))

]
We can also deduce the following equality:

U
π1,...,π

∗
L,...,πN

L (s) = min
Qc∈
−→
Qcriteria

Qc(s, π∗L(s))

So, Eq.7=Eq.8 is equivalent to:

min−−−−−→
BR(π∗L)

U
π1,...,π

∗
L,...,πN

L (s) (9)

= max
πL

(min−−−−−→
BR(πL)

Uπ1,...,πL,...,πN

L (s)) (10)

Thus, the LexDiff operator leads to a Stackelberg equi-
librium. We shown that LexDiff leads to a Stackelberg
equilibrium if and only if every criterion leads to such an
equilibrium.

ICAPS'08 Multiagent Planning Workshop

Adapting 2V-DEC-MDP to reach a
Stackelberg equilibrium

Theorem 2. The criteria of the 2V-DEC-MDP described in
(Eq.2,Eq.3,Eq.4) don’t lead to a Stackelberg equilibrium.

Proof. According to theorem.1 We aim to show that ER,
JER or JEP is not a Stackelberg equilibrium. Because of
Eq.1, we can write:

min−−−−−→
BR(π∗L)

ER(s, π∗L(s)) 6= max
πL

(min−−−−−→
BR(πL)

ER(s, πL(s))) (11)

min−−−−−→
BR(π∗L)

JER(s, π∗L(s)) 6= max
πL

(min−−−−−→
BR(πL)

JER(s, πL(s))) (12)

min−−−−−→
BR(π∗L)

JEP (s, π∗L(s)) 6= max
πL

(min−−−−−→
BR(πL)

JEP (s, πL(s))) (13)

So, if we follow ER only, the objective will be to maxi-
mize the ER value. We then have, with π∗L the leader’s policy
resulting from the ER criterion:

ER(sL, π∗L(sL)) = max
πL

ER(sL, πL(sL))

However, the equation:

ER(sL, π∗L(sL)) =
∑
s′L∈SL

(p(sL, π∗L(sL), s′L) · V ∗(s′L))

suppose that only one policy πi is assumed for each agent in
the neighborhood when computing the value of ER. Indeed,
V ∗(s′L) is the reward of the leader when it gets closer to its
objective (ie. when s′L is closer to the objective than sL).
However, even if an agent gets closer to a point according to
a pure geographic point of view, it can in reality move away
from this point because of the other agents: if they go be-
tween the leader and its objective, it will have to avoid them,
what will imply additional movements. Another decision
could make the leader to get closer to its objective without
being constrained by the other agents. So we have:

ER2VMDP = max
πL

ER(s, πL(s)|−→π assumed)

while the equation for a Stackelberg equilibrium following
leader will be:

ERst = max
πL

(min−→π
ER(s, πL(s)|−→π))

But we are not sure that the agents will follow the assumed
policies. We then have:

ER2VMDP ≤ ERst
So we have:

min−−−−−→
BR(π∗L)

ER(s, π∗L(s)) ≤ max
πL

(min−−−−−→
BR(πL)

ER(s, πL(s)))

So, ER does not lead to a Stackelberg equilibrium, nor a 2V-
DEC-MDP parametrized by ER, JER and JEP.

criteria rewriting
According to the preceding theorem, the leader does not fol-
low a Stackelberg equilibrium, because its criteria don’t lead
to such an equilibrium. Is it possible to change those criteria,
to make the leader following a Stackelberg equilibrium? If
yes, what will be the complexity of computing such an equi-
librium? Indeed, the leader will not only have to consider
the other agent’s state anymore but also their policies.

ER criterion (Eq.11): We have distance(s, g) the dis-
tance between s and the goal g if we don’t know what the
other agents do, and distance−→π (s, g) the distance between
s and g knowing the 1 to N agents’ policies. Actually, we
have:

ER(sL, π∗L(sL)) =∑
s′L∈SL

(p(sL, π∗L(sL), s′L) · (−distance(s′L, g)))

If we want to take the other agents’ decisions into account,
we can write:

ER(sL, π∗L(sL)) =

min−−−−−→
BR(π∗L)

∑
s′L∈SL

(p(sL, π∗L(sL), s′L) · (−distance−→π (s′L, g)))

And:

distance−→π (s′L, g) =
∑
−→s

p(
−→
s′ ;
−−→
π(s);

−→
s′) · distance−→s ′(s′L, g)

=
∑
−→s ′

[(
N∏
i=1

p(si, πi(si), s′i)

)
· distance−→s ′(s′L, g)

]
Where distances′1,...,s′N (s, g) is the distance from s to g

without crossing s′1, nor s′2, nor . . . , nor s′N .
Because we want to maximize this criterion, we will have:

ER(s, π∗L(s)) = max
πL

(min−−−−−→
BR(πL)

ER(s, πL(s)))

Thus, this new ER version leads to a Stackelberg equilib-
rium.

JER criterion (Eq.12): We said that JER was the follow-
ing, with K(s) = 1 if there are agents behind s and 0 if
not:

JER(sL, π∗L(sL)) =
∑
s′L∈SL

[p(sL, π∗L(sL), s′L) ·K(s′L)]

For taking the other agents’ policies into account, we can
change this criterion as follows:

JER(sL, π∗L(sL))

= min−−−−−→
BR(π∗L)

 ∑
s′L∈SL

[p(sL, π∗L(sL), s′L) ·K−→π (s′L)]


Where K−→π (s) is the function which estimates the probabil-
ity that at least one agent stays behind s (the objective being
not to break the platoon). K is defined by:
let

sb(s) = {−→s ′ ∈ S|N ||∃si ∈ −→s ′ with isBack(si, s) = true}
in

K−→π (s) =
∑

−→s ′∈sb(s)

p(−→s ,
−−→
π(s),

−→
s′)

=
∑

−→s ′∈sb(s)

[
N∏
i=1

p(si, πi(si), s′i)

]

Where isBack(
−−−→
s1, s2) is a function which returns true if s1

is behind s2.

ICAPS'08 Multiagent Planning Workshop

Because we aim to maximize the criterion, we will have:

JER(s, π∗L(s)) = max
πL

JER(s, πL(s))

⇐⇒ min−−−−−→
BR(π∗L)

JER(s, π∗L(s))

= max
πL

(min−−−−−→
BR(πL)

JER(s, πL(s)))

Thus, we have an equation for the JER criterion such as if the
leader only follows this criterion, it will be in a Stackelberg
equilibrium.

JEP criterion (Eq.13): the JEP criterion is the following,
with C a negative constant which represents the cost of a
collision between two agents:

JEP (sL, π∗L(sL)) =
∑
s′L∈SL

p(sL, π∗L(sL), s′L)λ

where:

λ =
N∑

sj ,j=1

∑
πj

p(sj , πj(sj), s′j) · C


If we want to take into account the other agents’ policies,
we can rewrite JEP, with pL = p(sL, π∗L(sL), s′L) and pj =
p(sj , πj(sj), s′j):

JEP (sL, π∗L(sL))

=
∑
s′L∈SL

pL · N∑
sj ,j=1

(
min

πj∈BR(π∗L)
pj · C

)
= min−−−−−→
BR(π∗L)

 ∑
s′L∈SL

pL · N∑
sj ,j=1

pj · C


Because we aim to maximize the criterion, we will have:

JEP (s, π∗L(s)) = max
πL

JEP (s, πL(s))

⇐⇒ min−−−−−→
BR(π∗L)

JEP (s, π∗L(s))

= max
πL

(min−−−−−→
BR(πL)

JEP (s, πL(s)))

Thus, this JEP criterion leads to a Stackelberg equilibrium.
So, we rewrote the 3 criteria so that they all lead, indepen-

dently of each other, to a Stackelberg equilibrium. Thus, if
the leader follows those criteria, it will be in a Stackelberg
equilibrium.

Complexity
We will now compare the complexity of our initial formal-
ism to the one of the Stackelberg formalism. We will make
this comparison on the ER criterion, but those results are
the same for JER and JEP .

Initial criteria
For the ER criterion, the hard part is the distance compu-
tation (distance(s, g)). We will have to compute once this
distance to estimate the value of ER(s, a). So, to find the
best action, we will have to computeA times this distance,A

being the number of different actions an agent can do. Thus,
if we write d the time to compute a distance, the global com-
plexity for this criterion will be in:

O(A · d)

Moreover, if all the distances have been computed before, in
V ∗, the complexity become: O(A).

Stackelberg adapted criteria
A leader which follow the Stackelberg version of the ER
criterion first have to estimate the different policies for all
the agents. The complexity to estimate the policies of an
agent is inO(A·d), because those agents apply the ”normal”
criteria. The agent then have a global complexity for this
step in O(N · A · d), with N the number of agents which
were detected around it.

We then compute distance−→π (s, g) X times, X being the
number of different

−−−−→
BR(a). If we write D the complexity

for computing distance−→π (s, g), we then have a global com-
plexity for this step in O(X ·D).

In the worst case, the value of X is AN , with N the num-
ber of agents. Indeed, the worst case is the one where any
action of A is possible for any agent j. The number of dif-
ferent possible tuples (actionAgent1, ..., actionAgentN)
is then AN .

The D value depends on how many times we have to
compute a distance, i.e. the number of different possible
tuples (s′1, ..., s

′
N). Since, in the worst case, an agent can

finish in 3 different states after applying an action (because
of the uncertainty, 3 being a value fixed in our formalism),
we will have 3N possible tuples, and a complexity for D in
O(3N · d).

Global complexity for computing the value of an action
according to ER is then in O((N · A · d) + (X · D)) =
O((N · A · d) + (AN · 3N · d)). We can then estimate the
complexity for computing the best action according to ER:
O(A · [(N ·A · d) + (AN · 3N · d)]) =

O((N ·A2 · d) + (AN+1 · 3N · d))

Thus, according to this criterion, complexity is much higher
in the Stackelberg case. Moreover, we only used the ER
criterion to compare those two formalisms, but we can ap-
ply the same reasoning on the two other criteria. Indeed,
the complexity growth comes essentially from the ” min−−−−−→

BR(π∗L)

”,

which is responsible of the AN factor.

Platoon maintaining
Until now, we only interested into the platoon formation,
but what is about maintaining this platoon? Indeed, once
the platoon formed, the leader does not have more than 1
agent in its neighborhood anymore: the one which follows
it. Complexity for following a Stackelberg equilibrium is
then in:

O((1 ·A2 ·d)+(A1+1 ·31 ·d)) = O(4 ·A2 ·d)) = O(A2 ·d))

Thus, once the platoon formed, complexity is nearly the
same as the one for initial criteria.

ICAPS'08 Multiagent Planning Workshop

Experimental results
We tested our formalism in a simulator which we made
for testing those kind of Multi-Agent Systems. In this
simulator, agents’ behavior is directed by a 2V-DEC-MDP
parametrized by the way we described in the previous sec-
tions. Actions are stochastic and we use no communication
at all. Fig.2 and Fig.3 represent the situation on which we
made our tests: circles are agents and polygons are locations
where agents can go. Clear polygons are open places, while
darker polygons are unavailable places. We made several
tests:

• with 7 agents, running the simulator several times with
Stackelberg and several times without (10 times each), to
compare complexity and quality,

• with a chosen leader, running several simulations with 1,
2, . . . , 7 agents in its neighborhood (running 5 times each
situation), to analyze complexity.

Figure 2: Test environment (start)

Figure 3: Test environment (end)

We summarize results of our tests in the following graphs.
The first one represents the distance evolution from the pla-
toon to its objective during time, while the second one rep-
resents the complexity evolution according to the number of
agents. Distance is a good mean to estimate the platoon’s
behavior quality, because it shows how fast the group is able
to move. Those graphs show results from the environment
presented before, as an example, but we did some tests with
other initial configurations and other environments.

The first graph (Fig.4) shows platoon’s distance (accord-
ing to its objective) evolution over time. We can see that a
Stackleberg using platoon moves exactly at the same speed
as a non Stackelberg using platoon. Thus, the behavior when

Figure 4: Distance to the objective

we don’t use a Stackelberg equilibrium seems to be the same
as the one when we use such an equilibrium.

There is an interesting point here: at the end of its evo-
lution, the platoon moves a little faster without Stackelberg
than with it. Why this difference ? With Stackelberg, the
platoon’s leader is more prudent: it chooses to move slowly,
to be sure not to break the platoon. Although, this difference
is not representative of the global platoon behavior: during
most of the time, there is no difference at all.

So, it seems that a platoon using our formalism acts as
well as a platoon using a Stackelberg equilibrium. Now,
what is about the complexity of computing a decision ?

Figure 5: Computation time

the second graph (Fig.5) shows the complexity according
to the number of agents in neighborhood. When we don’t
use a Stackelberg equilibrium, the complexity seems to be
proportional to the number of agents. This is logic accord-
ing to the equations of ER, JER and JEP : each of those
equations depends on the agents in the neighborhood. Any-
way, computation time grows very slowly with the number
of agents. We made some tests with agents starting scattered
in the environment: computation time then stay under 0.01
second even with 50 agents.

Complexity is much bigger with a Stackelberg equilib-
rium: its exponential. We can see that, when more than 7
agents are in the neighborhood of the leader, time for com-
puting an action becomes too hight to be tractable by our
simulation. Complexity is then much better with our for-

ICAPS'08 Multiagent Planning Workshop

malism which can deal with problems up to 50 agents.
During tests on other situations, with other environments,

results were the same than the ones depicted in Fig.4 and
Fig.5: quality of the behavior was the same with and without
Stackelberg, complexity was exponential with Stackelberg
and proportional without. Moreover, without stackelberg,
we are always able to deal with problems up to 50 agents.
Thus, it appears that a platoon using our formalism acts as
well as a platoon following a Stackelberg equilibrium, with
a clearly better complexity.

Conclusion
In this paper we have presented a 2V-DEC-MDP for the
platoon formation problem, with a straight line shape. We
shown the relationship between the value functions of the
2V-DEC-MDP and the stochastic games. This allowed us
to compare the initial formulation of the flocking rules in
the 2V-DEC-MDP, with another heading to the Stackelberg
equilibrium. The results are that without any loss in quality,
the 2V-DEC-MDP complexity is lower than the computation
of the Stackelberg equilibrium.

In future work, we will study the impact of adding hu-
man controlled agents into the platoon. We will also study
the interactions between different platoons (crossing, merg-
ing, splitting...). This framework will be validated by im-
plementing this formalism onto an heterogeneous group of
robots (Wifibots, Koalas).

References
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman,
C. V. 2004. Solving Transition Independent Decentralized
Markov Decision Processes. Journal of Artificial Intelli-
gence Research 22:423–455.
Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000.
The complexity of decentralized control of markov deci-
sion processes. In UAI ’00: Proceedings of the 16th Con-
ference on Uncertainty in Artificial Intelligence, 32–37.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.
Boussard, M.; Bouzid, M.; and Mouaddib, A.-I. 2007.
Multi-criteria decision making for local coordination in
multi-agent systems. In 19th IEEE International Confer-
ence on Tools with Artificial Intelligence (ICTAI 2007), Oc-
tober 29-31, 2007, Patras, Greece, volume 2, 87–90. IEEE
Computer Society.
Boussard, M.; Bouzid, M.; and Mouaddib, A.-I. 2008. Vec-
tor valued markov decision process for robot platooning.
In European Conference on Artificial Intelligence (ECAI
2008), July 21-25, 2008, Patras, Greece.
Chaib-draa, B. 2005. Processus Décisionnels de Markov
et Intelligence Artificielle. Groupe PDMIA, 1.1 edition.
chapter Jeux, jeux répétés et jeux Markoviens.
Könönen, V. 2003. Asymmetric multiagent reinforcement
learning. iat 0:336.
Michaud, F.; Lepage, P.; Frenette, P.; Letourneau, D.; and
Gaubert, N. 2006. Coordinated maneuvering of automated
vehicles in platoons. ITS 7(4):437–447.

Mouaddib, A.; Boussard, M.; and Bouzid, M. 2007. To-
wards a framework for multi-objective multiagent plan-
ning. In AAMAS.
Puterman, M. L. 1994. Markov decision processes: Dis-
crete stochastic dynamic programming. In John Wiley and
Sons, New York, NY.
Reynolds, C. W. 1987. Flocks, herds, and schools: A dis-
tributed behavioral model. Computer Graphics 21(4):25–
34.
Shapley, L. 1953. Stochastic games. In National Academy
of Sciences.
Stackelberg, H. 1952. The theory of the market economy.
New York, Oxford: Oxford University Press.

ICAPS'08 Multiagent Planning Workshop

