
From One to Many: Planning for Loosely Coupled Multi-Agent Systems

Ronen I. Brafman
Department of Computer Science

Ben-Gurion University
brafman@cs.bgu.ac.il

Carmel Domshlak
Faculty of Industrial Engineering and Management

Technion
dcarmel@ie.technion.ac.il

Abstract

Loosely coupled multi-agent systems are perceived as easier
to plan for because they require less coordination between
agent sub-plans. In this paper we set out to formalize this
intuition. We establish an upper bound on the complexity
of multi-agent planning problems that depends exponentially
on two parameters quantifying the level of agents’ coupling,
and on these parameters only. The first parameter is problem-
independent, and it measures the inherent level of coupling
within the system. The second is problem-specific and it has
to do with the minmax number of action-commitments per
agent required to solve the problem. Most importantly, the di-
rect dependence on the number of agents, on the overall size
of the problem, and on the length of the agents’ plans, is only
polynomial. This result is obtained using a new algorithmic
methodology which we call “planning as CSP+planning”.
We believe this to be one of the first formal results to both
quantify the notion of agents’ coupling and to demonstrate a
tractable planning algorithm for fixed coupling levels.

Introduction
Suppose that we seek a plan for a system consisting of a co-
operative set of agents, each with its own capabilities. To
what extent would (centralized) planning for such a multi-
agent (MA) system be harder than solving individual plan-
ning problems over the domains of each of the agents in iso-
lation? Intuitively, the answer to this question should de-
pend both on the actual problem in hand, as well as on the
design of the MA system. Clearly, if the agents are tightly
coupled, then planning for a MA system can become expo-
nentially harder than individual, internal planning for each
agent, because we must basically treat the system as a sin-
gle, large entity. On the other extreme, planning for a com-
pletely decoupled system of agents will merely require solv-
ing a few independent single-agent planning problems, and
would thus incur at most a linear factor over planning for the
individual agents themselves. But what lies in between?

Intuitively, we would expect planning to become easier
the more loosely coupled the system is, and we seek an
algorithm that can take advantage of such loose coupling.
However, “loose coupling” itself is a loose concept, and to
concretize it, we need to identify a set of formal parame-
ters quantifying the “coupling level” of MA systems. Then,
we must show either that the worst-case time complexity of

planning for such systems can be formulated in terms of
these parameters, or that empirical run-time complexity of
planning for such systems correlates with these parameters
(or, of course, both). The former is what we set out to do in
this paper.

A discussion of planning problems and their complexity
must occur within some formal model. In this work we con-
sider a minimalistic state-transition model expressed via the
STRIPS classical planning language (Fikes & Nilsson 1971),
slightly extended to associate actions with agents. To cap-
ture the level of interaction between agents we define and
exploit the agent interaction (di)graph in which two agents
are connected if one agent’s action affects the functionality
of the other agent. We show that the worst-case time com-
plexity of planning for a MA system can be tied to the tree-
width of this graph: the lower it is, the less dependent agents
are on one another when they desire to change their state.

However, as we will see, the situation is a bit more com-
plex. Besides a dependence on the structure of the system,
there is also dependence on the properties of the concrete
problem the system must solve. Some problems cannot be
solved without much coordination between the agents, even
if each agent interacts with just a few, or even one, other
agents. The latter is a problem-specific parameter that cor-
responds to the number of actions executed by each agent
that influence or are influenced by other agents in the sys-
tem. Thus, one coupling parameter, denoted by ω, roughly
corresponds to a measure of the number of agents that each
agent must coordinate with (because they have the potential
to influence her) and the other, denoted by δ, corresponds to
the number of actions involving other agents that an agent
must insert into its plan.

The above two parameters are intuitive, but are insuffi-
cient to formalize the worst-case time complexity of MA
planning because specific problem/domain properties may
affect the cost of single agent planning in each domain.
Thus, our result is formulated in terms of the overhead of
planning for a multi-agent system as a function of planning
for each single agent in isolation. As noted above, this can
move from an exponential overhead to a linear one. Our
main contribution is to provide an algorithm that can grace-
fully move between these two extremes as a function of the
coupling level of the system. We provide an algorithm for
planning for a MA-system that is (worst-case) harder than

ICAPS'08 Multiagent Planning Workshop

planning for each of its agents in isolation by a factor ex-
ponential only in the tree-width of the agent interaction
graph and the maximal number of coordination points an
agent must have. Most importantly, the direct dependence
on (i) the overall size of the planning problem, (ii) the num-
ber of agents, and the length of the joint, and even individual,
plans, is only polynomial. In other words, if the coupling pa-
rameters remain fixed while the number of agents increases,
the cost of planning will increase only polynomially!

In our work, we build upon, combine, and extend the
ideas underlying two recent proposals for factored single-
agent planning by Brafman and Domshlak (2006) and Amir
and Engelhardt (2003). Our key extension corresponds to a
new algorithmic methodology for planning, which we refer
to as “planning as CSP+planning”. In particular, in contrast
to the above works on factored planning, this methodology
allows us to handle efficiently MA planning problems that
require arbitrary long individual agent plans, provided the
number of coordination points per agent is kept fixed. Over-
all, this gives us some of the first tractability results for non-
hierarchical MA planning, and a formal characterization of
coupling level and its effect on the hardness of MA planning.
Moreover, although our discussion is in terms of centralized
planning, the algorithm we provide is based on solving an in-
herently distributed CSP. Thus, using any of the many algo-
rithms for distributed constraint satisfaction (Yokoo 2001),
one obtains a distributed planning algorithm. And the under-
lying ideas go well beyond the simple STRIPS action model.

The paper is structured as follows. We start by defining
the basic multi-agent planning model used. This definition
naturally induces the notions of private/internal vs. public
actions of an agent. It also leads to the definition of the agent
interaction graph of the MA planning domain. Then, in the
main section of this paper we show how to solve MA plan-
ning using an enhancement of planning as CSP, which we
call planning as CSP+Planning. In this context, the problem
of planning with landmarks arises naturally, and we show
how to reduce this problem to a standard planning prob-
lem. After describing our planning algorithm, we analyze
its complexity. Following this we re-examine the algorithm
and modify it somewhat to get improved complexity.

Multi-Agent “Classical Planning” Model
We consider planning for cooperative MA systems in which
agents act under complete information and via determin-
istic actions. Specifically, we consider problems express-
ible in a minimalistic MA-extension of the STRIPS lan-
guage (Fikes & Nilsson 1971). In particular, the problems
considered here comprise the seminal automata-based multi-
entity models (Moses & Tennenholtz 1995). In what fol-
lows, we formalize this extension of STRIPS, as well as some
of its useful derivatives that we then employ in the problem-
solving part of the paper.

Definition 1 An MA-STRIPS problem for a system of
agents Φ = {ϕi}k

i=1 is given by a quadruple Π =
〈P, {Ai}k

i=1, I, G〉, where:

• P is a finite set of atoms (also called propositions), I ⊆ P

encodes the initial situation, and G ⊆ P encodes the goal
conditions,

• For 1 ≤ 1 ≤ k, Ai is the set of actions that the agent ϕi

is capable of performing. Each action a ∈ A =
⋃

Ai

has the standard STRIPS syntax and semantics, that is,
a = 〈pre(a), add(a), del(a)〉 is given by its preconditions,
add effects, and delete effects.

Clearly, MA-STRIPS reduces to STRIPS exactly when k =
1. For ease of presentation, we assume that the individual
action sets of the agents are disjoint, i.e., no two agents share
an identical action. This assumption is easy to eliminate, as
we explain later in the paper.

To illustrate the MA-STRIPS model, consider the well-
known Logistics domain in which a set of packages should
be moved on a (possibly complex) roadmap from their ini-
tial to their target locations using a given fleet of vehicles
such as trucks, airplanes, etc. The packages can be loaded
onto and unloaded off the vehicles, and each vehicle can
move along a certain subset of road segments. It is quite
natural to model this domain using MA-STRIPS by associat-
ing an atom with each package location on the map and in
the vehicles, and with each truck location on the map. The
action schema are move, load , and unload , with the suit-
able parameters (e.g., move(truck, origin, destination)
and load(package, truck, at-location)). Associating each
truck with an agent, we might assign to this agent all the
move, load , and unload actions in which it is involved.
(Note that disjointness of agents’ action set is not problem-
atic here as load(P, T, L) and load(P, T ′, L) are two differ-
ent actions in A.)

We now focus on dependencies that such a MA-STRIPS
problem Π induces on the agents Φ. In what follows, we
use eff(a) as a shortcut for add(a) ∪ del(a). Let Pi =⋃

a∈Ai
pre(a) ∪ eff(a) be the set of all atoms affected by

and/or affecting the actions of the agent ϕi. By internal
atoms and public atoms of agent ϕi we refer to the subsets
P int

i = Pi \
⋃

ϕj∈Φ\{ϕi} Pj , and P pub
i = Pi \ P int

i , respec-
tively. That is, if p ∈ P int

i , then other agents can neither
achieve nor destroy nor even require p. Clearly, the inter-
nal atoms of all the agents are pair-wise disjoint, and there
might be certain atoms that are internal to no agent. In our
example, all possible truck locations are atoms internal to
the truck agent, while package locations are public if they
can be loaded/unloaded in these locations into/from more
than one vehicle.

Using this notion of an agent’s internal atoms, we can now
define the partition Ai = Aint

i ∪ Apub
i of agent actions into

its internal and public actions, respectively, where

Aint
i = {a | a ∈ Ai, pre(a) ∪ eff(a) ⊆ P int

i }.

That is, Aint
i is the set of all actions whose description con-

tains only internal atoms of ϕi, while all other actions of ϕi

are public. In our example, all the move actions are certainly
internal to the respective vehicle agents, while load, unload
actions are public just if they affect the position of a pack-
age in some of its public locations. Given an action a of
agent ϕi, we use a|int to denote the projection of a onto its

ICAPS'08 Multiagent Planning Workshop

private conditions, that is, a|int = 〈pre(a) ∩ P int
i , add(a) ∩

P int
i , del(a)∩P int

i 〉. If a ∈ Aint
i , then a = a|int, but otherwise

a|int may have fewer conditions.
Finally, we introduce the notion of agent interaction di-

graph IGΠ that plays a key role in the algorithmic part of the
story. The nodes of IGΠ correspond to the system’s agents
Φ. There is a directed edge from node ϕi to node ϕj in
IGΠ if there exist actions ai ∈ Ai and aj ∈ Aj such that
eff(ai) ∩ pre(aj) 6= ∅. That is, an edge from ϕi to ϕj indi-
cates that ϕi either supplies or destroys a condition required
by ϕj . It is possible, of course, that there are edges in both
directions between ϕi and ϕj .

It worth noting the connection between agent-interaction
graph and the well known causal graph which plays an im-
portant role in the work of Brafman and Domshlak (2006)
on factored planning. The nodes of the causal graph cor-
respond to domain variables, and an edge connects node p
to q if there exists an action a such that p ∈ pre(a) and
q ∈ eff(a). Thus, the causal graph is a special instance of
the agent-interaction graph when each agent is associated
with a proposition and its set of actions contains all actions
that influence the value of this proposition.

Planning as CSP+Planning
We now proceed to consider the algorithmic alterna-
tives for solving a given MA-STRIPS problem Π =
〈P, {Ai}k

i=1, I, G〉. Obviously, one can simply compile it
into an equivalent “single-agent” STRIPS planning problem
〈P,A, I,G〉 and apply some state-of-the-art algorithm for
this task. This compilation, however, hides away the orig-
inal problem decomposition induced by the agents Φ. In
particular, the worst-case time complexity of solving Π this
way is independent of the structure and some other prop-
erties that may naturally be induced by the agent coali-
tion Φ over the planning problem in hand. Specifically,
the worst-case time complexity of leading approaches to
STRIPS planning is either unbounded (for local search proce-
dures), or exponential in the size of the problem description
(for standard planning-as-CSP approaches), or exponential
in the length of the shortest plan (for BFS-style procedures).
The exceptions would be only some recently-proposed al-
gorithms for factored planning (Amir & Engelhardt 2003;
Brafman & Domshlak 2006; Kelareva et al. 2007) that we
build upon in our work here. The MA-STRIPS solving frame-
work we propose here combines some technical ideas under-
lying two such factored planning algorithms of (Brafman &
Domshlak 2006) and (Amir & Engelhardt 2003), and ex-
tends them to target loose agents’ coupling, which we be-
lieve to be a natural property of practical MA systems.

Coordination-Centric Planning
Consider some plan ρ for Π and an agent ϕi involved in it.
Let the individual sub-plan ρi of ϕi be the order-preserving
projection of ρ onto ϕi’s set of actions Ai. Let ai1 , . . . , aim

be the public actions in ρi (in their order of appearance); be-
tween each adjacent actions aij

, aij+1 we have a (possibly
empty) sequence of internal actions of ϕi. While, in princi-
ple, it is possible that the agent has no internal actions, one

would expect to encounter many such actions in a system of
substantially autonomous agents. Thus, we can view each
agent’s plan as a sequence of coordination (or commitment)
points, i.e., points in which it executes actions that possi-
bly influence or are influenced by other agents directly, and
in between them, actions that do not affect other agents di-
rectly.

As an example, consider the Logistics domain described
earlier, and recall that move actions are internal to the
vehicle-operating agents. If the vehicles move on a complex
map, requiring many map-point to map-point movements in
between load and unload actions, then between every two
actions requiring coordination, there would be many inter-
nal move actions. Another example would be the Rover do-
main that modelsaaa NASA’s exploration rovers (Bresina et
al. 2002). Imagine a set of rovers that explore a particular
region. The public actions would be actions that carry out an
experiment at a location, such as taking a measurement or a
photo. These actions are public because they affect (goal)
propositions that can be affected by many other rovers (e.g.,
some other rovers can also take these measurements or pic-
tures). However, the individual plans of the rovers consist
mostly of actions like moving from one location to another,
tracking an object, extending the arm, warming up devices,
placing instruments, calibrating instruments, etc. All these
are internal actions that affect only the rover’s internal state,
and typically many of them come in between each pair of
public actions.

Given this expectation from the MA planning problems,
a promising idea should be to shift emphasis to the co-
ordination points in the search, and let the agents “fill-in
the details” on their own. In fact, this intuitive principle
is already adopted one way or another in many domain-
specific multi-agent (and, in particular, multi-robot) sys-
tems (Durfee 1999). Likewise, this principle lies in the
heart of (both domain-specific and general-purpose) hierar-
chical planning systems (e.g., (Erol, Hendler, & Nao 1994;
Knoblock 1994; Clement, Durfee, & Barrett 2007)). Our
objective here is to operationalize this principle in a generic,
domain-independent manner in systems that do not neces-
sarily exhibit substantial hierarchy among the agents. We
now explain how this works.

First, suppose that we know how many coordination
points each agent requires in order to solve the planning
problem. In that case, we can

(1) guess how these coordination points look like, that is,
what public actions are executed in them and when, and

(2) for each agent, add internal actions between its coordi-
nation points to provide their respective internal precon-
ditions, obtaining a legal joint plan for the system.

The latter task requires each agent to plan “in-between” its
coordination points, adding internal actions that take it from
the state following one public action to a state in which the
next public action can be executed. In addition, different
agents’ individual sub-plans must be consistent—if an agent
sub-plan calls for executing an action that requires some pre-
condition to hold, then (i) either this or another agent must
produce this precondition in time, and (ii) no agent is al-

ICAPS'08 Multiagent Planning Workshop

lowed to destroy this precondition. For example, if the agent
of truck T decides to load a package P in location L, then
P should either be in L from the beginning, or be some-
how brought to L in time, and, in any case, no other vehicle
should be allowed to grab this package from L before T .

Of course, we have no way of guessing correctly how
many coordination points there are and what their content
is. On the other hand, we can try searching over all pos-
sible guesses, checking whether a guess can be extended
into a complete plan. The time complexity is directly re-
lated to this: to find coordination points we perform it-
erative deepening over the number of coordination points,
which requires time exponential in the number of coordi-
nation points. If we are not careful, a naive such iterative
deepening is exponential in the total number of coordination
points among all agents; that would be very problematic as
this parameter is expected to grow at least as fast as the num-
ber of agents in the system. The good news is that, with care,
we can reduce the time complexity to be exponential only
in the number of coordination points required by a single
agent. This number will be dominated by the agent that re-
quires the most coordination points, and of course, we will
seek to minimize this number. Note that this parameter is
problem-specific because it depends on both the initial state
and the goal of the MA system.

CSP and (Intra-Agent) Planning with Landmarks

We now describe a concrete procedure for extending a
choice of coordination points into a globally consistent plan
that corresponds to a certain combination of constraint sat-
isfaction and planning

In general, a constraint satisfaction problem (Dechter
2003) is defined via a set of variables, U = {ui}n

i=1,
with respective domains {Di}n

i=1, and set of constraints
{ci}m

i=1. Each constraint ci is associated with a subset of
variables {ui1 , . . . , uil(i)}, and defines a subset of tuples
Ci ⊆ Di1 × · · · × Dil(i) to be the set of allowable joint as-
signments to these variables. An assignment 〈{θ1, . . . , θk}〉
to U is a satisfying assignment if its projection to the do-
main of each constraint satisfies that constraint, that is, if
〈θi1 , . . . , θil(i)〉 ∈ Ci.

Now, assume that we allow each agent at most δ ≥ 0 co-
ordination points. Thus, the total number of coordination
points across the system is at most kδ (recall that k is the
number of agents). Given this explicit constraint on solving
Π, we define a constraint satisfaction problem CSPΠ;δ over
k variables U = {ui}k

i=1, one for each agent ϕi. Each such
variable, ui, represents the agent’s choice of coordination
points. That is, its domain consists of different choices the
agent could make for the choice of coordination points. Each
such choice consists of an action to execute and a time to ex-
ecute this action. Thus, it is most convenient to view ui as a
vector of length δ, representing a sequence of δ coordination
points. Each entry in this vector is either empty (because the
agent may need fewer than δ coordination points), or is as-
signed a pair of the form (a, t), where a is public action of
ϕi, and t ∈ {1, 2, . . . , kδ} is an abstract time point at which

ϕi commits to performing a.1
Our next step is to pose constraints on ui such that any so-

lution to the CSP defined by these variables and constraints
can be extended into a legal plan for Π just if there exists a
legal plan satisfying the explicit δ-bound on each agent co-
ordination. To make things simpler and more uniform, we
assume the existence of some dummy agent that has a pair
of actions producing the initial state at abstract time 0, and
consuming the goal state at abstract time kδ + 1.

Our first constraint takes care of verifying the consistency
of an agent’s commitments with those of other agents affect-
ing its non-private values.

(C1) Coordination Constraint.
An assignment 〈θ1, . . . , θk〉 to U satisfies C1 iff, for
1 ≤ i ≤ n, (a, t) ∈ θi implies that, for each public
precondition p ∈ P pub

i of a holds

• for some uj , and some (a′, t′) ∈ θj , holds p ∈
add(a′) and t′ < t, (i.e., “someone supplies p be-
fore t”) and

• for no ul we have (a′′, t′′) ∈ θl with p ∈ del(a′′) and
t′ ≤ t′′ ≤ t (i.e., “no one destroys p between t′ and
t”).

For example, if uT represents a truck T and a =
load(P, T, L), then, if (a, t) appears in the sequence of uT ,
then either the agent of T or some other agent should make
sure that package P gets to location L at t′ < t, and no
other agent picks it up from there within the corresponding
abstract time interval [t′, t].

Our second constraint is posed over the internal part of the
coordination-point actions to ensure that the agent is capable
of supporting its own commitments. That is, the agent must
be able to generate internal actions ensuring that the internal
preconditions of the (public) actions it has committed to are
achieved, and in the right order. To specify this constraint,
we begin by formalizing a special type of single-agent plan-
ning problem which we call a STRIPS problem with action
landmarks.

Definition 2 A STRIPS problem with action landmarks is
given by a tuple ΠL = 〈P,A, I,G, σ〉 where

• P , A, I , and G have the standard STRIPS semantics of
atoms, actions, initial state, and goal, respectively.

• σ = 〈a1, . . . , a|σ|〉 is a sequence of action instances from
A′, where A′ is defined (similarly to A) in terms of P .

A sequence ρ of actions from A∪A′ is a plan for ΠL just if (i)
ρ is a plan for the regular STRIPS problem 〈P,A∪A′, I, G〉,
and (ii) σ is a subsequence of ρ.

Informally, our objective in a STRIPS problem with action
landmarks is to solve it in the standard sense while ensur-
ing that the solution contains a certain sequence of actions.
This sequence of actions may be disjoint from the regular
actions in A, though it does not have to be. In our case the

1The “abstractness” of time points is crucial, but it is explained
and motivated later. For now, the reader may consider these as
regular time points on some discrete scale.

ICAPS'08 Multiagent Planning Workshop

actions of σ will be projections of public actions onto their
internal preconditions. Note that planning with action land-
marks is meaningful even in the absence of a clear end-goal
G. In fact, this is exactly our usage of planning with ac-
tion landmarks in the specification of the internal-planning
constraint below.

(C2) Internal-Planning Constraint.
An assignment 〈θ1, . . . , θk〉 to U satisfies C2 iff, for
each θi = 〈(aθi

1 , t1), . . . , (aθi

δ , tδ)〉, the STRIPS prob-
lem with action landmarks

〈Pi, A
int
i , I ∩ Pi, ∅, 〈aθi

1 |int, . . . , a
θi

δ |int〉〉
is solvable.
Notice that C2 induces a set of unary constraints over

U— it constrains each agent’s coordination-point sequence
in isolation, and it does not depend on the actions of other
agents. However, unlike typical unary constraints, these are
procedural unary constraints over each ui in the form of a
single-agent planning problem of a certain form. We now
see clearly how CSP and planning are combined – CSP is
used to ensure the inter-variable consistency, while planning
is used to ensure intra-variable consistency (i.e., legal values
for each ui).

Putting things together, the high-level skeleton of our al-
gorithm for MA planning problems is depicted below.
procedure MA-planning (Π over agents ϕ1, . . . , ϕk)

δ := 1
loop

Construct CSPΠ;δ over u1, . . . , uk.
if (solve-csp(CSPΠ;δ)) then

Reconstruct a plan ρ from a solution for CSPΠ;δ .
return ρ

else
δ := δ + 1

endloop

The MA-planning algorithm performs an infinite loop.
Each iteration, it increments the (upper-bound on the) length
δ of the coordination sequences. Within the loop, the algo-
rithm constructs the constraint satisfaction problem CSPΠ;δ

along the constraints C1 and C2, and checks its satisfiabil-
ity. Flow-wise, this algorithm is similar to the iterative-
depening algorithm for (single-agent) factored planning of
Brafman and Domshlak (2006), with the (as shown below,
crucial) difference being in the constraint satisfaction prob-
lems checked within the loop. Theorems 1 and 2 provide the
correctness properties of the algorithm.

Theorem 1 (Soundness) Given a MA-STRIPS problem
Π = 〈P, {Ai}k

i=1, I, G〉, and an upper bound δ on the
number of coordination points per agent, if an assignment
〈θ1, . . . , θn〉 is a satisfying assignment to CSPΠ;δ , then it
can be extended into a legal plan for Π.

Theorem 2 (Completeness) Given a solvable MA-STRIPS
problem Π, there exists δ ≥ 0, such that CSPΠ;δ is solvable.

The proof of Theorem 1 requires taking care of numer-
ous technical details, but conceptually it is quite straight-
forward. Satisfaction of the planning-based constraint C2

implies “conditional” validity of individual agents’ plans,
while these conditions are verified by the constraint C1. The
latter corresponds to the standard partial-order causal-link
(POCL) constraints of flaw prevention, while the standard
ordering constraints of POP are replaced with associating
actions with explicit time points (as is done, e.g., in tempo-
ral POCL algorithms such as CPT (Vidal & Geffner 2006)).
Finally, goal-achievement of the action sequence induced
by 〈θ1, . . . , θn〉 is ensured by our schematic addition of the
dummy “goal-achiving” agent. The same line of reasoning
underlies the (simpler) proof of Theorem 2.

Complexity
We now proceed to consider the time complexity of the
MA-planning algorithm. Informally, this complexity cor-
responds to the number of times we need to verify that
a certain choice of coordination-sequence length forms a
basis for a solution times the complexity of the verifi-
cation process. In other words, the time complexity of
MA-planning is captured by the time complexity of solv-
ing the CSP+planning problems CSPΠ;δ . CSPs are a well-
studied problem, and we have a relatively good understand-
ing of their complexity. The most relevant result for our
purpose is that CSPs can be solved in time polynomial in
the problem size, and exponential in the tree-width of the
induced constraint graph (Dechter 2003). The constraint
graph is an undirected graph whose nodes correspond to the
CSP variables, and there is an edge between ui and uj just
if both participate in some constraint c. Informally, the tree-
width of a graph is a measure of its “cliquishness,” or how
tightly coupled its nodes are (Seymour & Thomas 1993).
For example, the tree-width of a tree is 1, regardless of its
size, whereas the tree-width of a complete graph over n
nodes is n.

Let δ denote the minimal coordination-sequence length
under which a solution exists. Given that, there are at most
δ coordination points for each of the k agents, which might
all be executed at different time points, and each such coor-
dination point corresponds to a public action of one of the
agents. Thus, the domain Di of each CSP variable ui of
CSPΠ;δ captures

|Di| =
δ∑

d=1

(
kδ

d

)
· |Apub

i |d = O((kδ|Apub
i |)δ+1) (1)

possible coordination sequences, where the first multiplica-
tive term within the summation captures the choice of d ≤ δ
time points, and the second term captures the choice of
public-action sequence of length d.

The complexity of enforcing the unary internal-planning
constraints C2 is O(f(I)

∑k
i=1 |Di|), where I is the max-

imal complexity of the individual planning for each agent
in Φ, and f(·) captures the cost of switching from reg-
ular planning. If we let D denote maxk

i=1 Di then this
can be written as O(f(I)kD), where D as well satisfies
D = O((kδ|Apub

i |)δ+1). Note that the C2 constraints are
unary constraints and they could be enforced “offline”, re-
sulting in an equivalent CSP with reduced variable domains.

ICAPS'08 Multiagent Planning Workshop

In turn, if CGΠ;δ is the constraint graph of CSPΠ;δ , then
checking the coordination constraint C1 can be done in time
O(kDω+1), where D = maxk

i=1 Di, and ω is the tree-width
of CGΠ;δ (Dechter 2003). Hence, we can conclude:

Theorem 3 The overall complexity of solving CSPΠ;δ is

O
(
f(I) · k(kδ|Apub|)δ+1 + k(kδ|Apub|)δω+ε

)
(2)

The first term of the summation is the cumulative complexity
of the single-agent sub-problems, and the second term is the
complexity of extending single-agent plans to a joint MA-
plan, with ε = δ + ω + 1 being the dominated factor in the
exponent.

Finally, we would like to establish a concrete connection
between the tree-width ω of the constraint graph CGΠ;δ and
the topology of the MA system. In Lemma 1 below we do
exactly that by connecting between the structure of CGΠ;δ

and that of the agent interaction graph IGΠ. The implication
is that this parameter can already be known to us at system
design time and does not depend on the particular planning
problem solved.

Lemma 1 For any MA-STRIPS problem Π, and any δ > 0,
the constraint graph CGΠ;δ induced by the constraints C1-
C2 is independent of δ, and is isomorphic to the moral graph
of IGΠ.

A moral graph of a digraph G is obtained by removing
the edge directions, and adding an edge between each pair of
(original) parents of each node of G. Sketching the proof of
Lemma 1, note that the edges of the constraint graph CGΠ;δ

are only due to the coordination constraints C1. Thus, there
is an edge between ϕi and ϕj either (A) if ϕi has public
actions affecting preconditions of some public actions of ϕj

(or vice versa), or (B) if ϕi and ϕj both have public actions
affecting (either positively or negatively) preconditions of
(possibly different) public actions of some third agent ϕl ∈
Φ. Given that, the bijective node mapping ∀i : ui 7→ ϕi

establishes an isomorphism between CGΠ;δ and the moral
graph of IGΠ; edges (A) and (B) of CGΠ;δ are mapped to
the original edges of IGΠ and the edges connecting between
the nodes’ parents, respectively.

Discussion
Considering the worst-case time complexity of MA-STRIPS
planning as a function of the time complexity I of STRIPS-
planning for each of the system’s agents, we have shown that
the former can be upper-bounded by

f(I) · exp(δ) + exp(δω)

that is, by the

• factor f(·) induced by requesting each agent to plan while
committing to a certain sequence of actions,

• multiplicative factor exponential only in δ, the minmax
number of per-agent commitments, and

• additive (!) factor exponential only in δω, where ω is the
tree-width of moral graph of the agent interaction graph.

Here, ω and δ provide quantitative measures of the coupling
“levels” of the system in general, and of the concrete prob-
lem instance, respectively. Note that, putting aside for a mo-
ment the factor f(·) of intra-agent planning, the complexity
of MA-planning

(1) has no direct exponential dependence on the number of
agents, k,

(2) has neither direct exponential dependence on the size
|Π| of the MA planning problem, nor such dependence
on the length of a joint plan for it (and this in contrast to
standard planning techniques), and

(3) has no direct exponential dependence on the length of
individual agent plans, in contrast to the recent factored
planning techniques we build upon (Amir & Engelhardt
2003; Brafman & Domshlak 2006)).

Having read this far, the reader may rightfully comment
that planning for each individual agent can already be expo-
nential in the overall size of the problem. Indeed, if some
of the domains of individual agents have size comparable to
that of the whole multi-agent system, that is, |Pi| = Θ(|P |),
the whole discussion of multi-agent planning complexity
seems like a waste of time, as some of the individual plan-
ning problems are about as hard as the problem of planning
for the entire system. In that case, treating the system as a
single entity is likely to be more profitable.

More natural and interesting settings correspond to sys-
tems in which each agent’s domain is not too large, and the
complexity of the system stems from the existence of many
such interacting agents. In such systems we would expect
the number of internal atoms of each agent to be relatively
small – that is, constant or O(log |P |). Now, planning for
a single agent, even if exponential in log |P |, is still poly-
nomial in P . In many MA systems this appears to be the
case. For example, in the Rovers domain mentioned be-
fore, individual agents are often designed to fulfill certain
well-defined roles, and their internal combinatorics can nat-
urally end-up being simple. In fact, this is one of the major
promises in devising heterogeneous MA systems: “One of
the powerful motivations for distributed problem solving is
that it is difficult to build artifacts (or train humans) to be
competent in every possible task. Moreover, even if it fea-
sible to build (or train) an omni-capable agent, it is often
overkill because, at any given time, most of those capabil-
ities will go to waste. The strategy in human systems, and
adopted in many distributed problem-solving systems, is to
bring together on demand combinations of specialists in dif-
ferent areas to combine their expertise to solve problems that
are beyond their individual capabilities.” (Durfee 1999). A
nice example of this approach in the context of planning and
scheduling has been proposed in (Wilkins & Myers 1998),
where sophisticated systems for planning and scheduling are
decomposed into modules, each of which is transformed into
an agent, allowing experimentation with different degrees of
coupling between the planning and scheduling capabilities.

Finally, let us consider closely the planning-with-
landmarks factor f(·); at least at first view, planning with
action landmarks seems to be more complicated than stan-
dard STRIPS planning. It is easy to show, however, that

ICAPS'08 Multiagent Planning Workshop

from the worst-case time complexity perspective the over-
head of adding landmarks is not significant.2 This is be-
cause any problem ΠL = 〈P,A, I,G, 〈a1, . . . , aδ〉〉 with δ
action landmarks can be compiled into an equivalent, regular
STRIPS problem Π by

(i) adding a single auxiliary multi-valued variable with
domain {q1, . . . , qδ},

(ii) reformulating each action landmark ai by setting
pre(ai) := pre(ai)∪{qi−1} and add(ai) := add(ai)∪
{qi}, and

(iii) extending the goal G to G ∪ {qδ}.

Note that, with this simple compilation, the state space of
Π is only δ times larger than the state space of ΠL. Thus,
assuming individual planning for each agent is polynomial
(in the size of the entire system description) it is easy to
verify that STRIPS planning with action landmarks for each
such agent remains polynomial-time as well.

To extend the algorithm to non-disjoint action sets we
need to distinguish between actions that can be performed
by two agents independently and actions that require true
coordination at execution. The first case is the simplest –
we create two copies of the action with different names and
are back to the case of disjoint sets. The second case covers
both actions that require joint-execution and actions that are
“mutually exclusive” – in both cases the agents must execute
in coordination. The interaction graph must be modified to
include edges between agents that “share” such actions, and
the constraints must be modified to ensure that these actions
co-occur (or not) within the sequence of public actions of
the corresponding agents. Naturally, the interaction graph
may be denser because of such actions, and their execution
requires the ability to synchronize.

Another point to note is that the MA-planning algorithm
has kδ abstract time points in which public actions are taken.
These time points are abstract because any number of inter-
nal actions can come between any two public actions. In
essence they serve only to constrain the order of the public
actions of different agents, and not as real time points. In
fact, the algorithm does the most to decouple the time points
used by each agent. This may be counter-intuitive, as usu-
ally we view fully synchronized systems as easier to deal
with. However, here additional synchronization would ac-
tually be a burden on the planning algorithms, as it would
add unnecessary constraints to the system, and would ac-
tually increase the worst-case time complexity of the algo-
rithms. Moreover, we see that the agents need not commu-
nicate their internal plans, nor do they need to synchronize
during execution time. All an agent needs to know is that
the preconditions for its next public action are satisfied.

Finally, the ability to perform the planning process in a
distributed manner is of great interest, and is conceptually
simple in our case. The key step in our algorithm is solv-
ing an appropriate CSP. This CSP has a natural distributed
formulation and any of the many (distributed) algorithms

2Of course, empirically, the situation may be quite different.
But by this point it should be apparent to the reader that here we
focus only on formal, worst-case analysis of these issues.

for solving distributed CSPs could be used to generate a
distributed version of the MA-planning algorithm (Yokoo
2001). The particular choice of the distributed CSP algo-
rithm would affect properties such as communication com-
plexity, and this can be an interesting question for future
work.

Reducing the Time Complexity
Considering the worst-case time complexity of the
MA-planning algorithm as captured by Eq. 2, and recalling
our interest in the time complexity of MA planning mainly
as a function of time complexity of local planning for agents,
a complexity bottleneck appears to be the exponent in the
tree-width of the constraint graph CGΠ;δ . In what follows,
we show that this bottleneck can be partly eliminated, and
sometimes to a very large degree.

Considering the statement of Lemma 1, note that the tree-
width of CGΠ;δ can be Θ(k) even if the tree-width of the
undirected graph induced by the agent interaction graph is
O(1). The reason is that the coordination constraint for
the agent ϕi glues together the CSP variables correspond-
ing to all possible providers and all possible destroyers of
the preconditions of public actions Apub

i (cf. the use of the
moral graph in Lemma 1). Closely considering the language
used to “communicate” commitments within the coordina-
tion process imposed by solving CGΠ;δ , it turns out that
sometimes we can do substantially better.

Each sequence of coordination points θi =
〈(aθi

1 , t1), . . . , (aθi

δ , tδ)〉 posed by agent ϕi corresponds to a
set of δ announcements of the form “at time t I will perform
action aθi”. Now, let πi = maxa∈Apub

i
|pre(a) ∩ P pub

i | be
the tight upper bound on the number of public preconditions
of an action of ϕi. Note that this quantity is expected to
be very low; e.g., in most (if not all) standard planning
benchmarks we have πi = O(1) (Helmert 2003). Given
that, let us extend the verbosity of each coordination point
from (a, t) to (a, t, {(j1, t1), . . . , (jπi

, tπi
)}) having the

semantics “at time t I will perform action a, and I require
agents ϕjl

to provide me with the (jl-th) non-private
precondition of a at time tjl

, respectively.” This modifica-
tion of the language does not affect the internal-planning
constraints, but does effect the coordination constraints that
are now reformulated as follows.

(C3) Extended Coordination Constraint. An assign-
ment 〈θ1, . . . , θk〉 to U satisfies C3 iff, for 1 ≤ i ≤ n,
(a, t, {(j1, t1), . . . , (jπi , tπi)}) ∈ θi implies that, for
1 ≤ l ≤ πi, if pl ∈ P pub

i is the jl-th public precondi-
tion of a, then

• for some ujl
, and some action a′ ∈ Apub

jl
, holds pl ∈

add(a′) and (a′, tl, {·}) ∈ θjl
, and

• for no uj we have (a′′, t′′, {·}) ∈ θj if pl ∈ del(a′′)
and tl ≤ t′′ ≤ t.

Intuitively, what we required were commitments that not
merely demand that someone will supply some condition,
but rather, explicitly name the supplier and the supply time.
This may appear a bad idea: we increased the domain

ICAPS'08 Multiagent Planning Workshop

of the CSP variable because there are now many more
syntactically-different coordination sequences of length δ.
However, this constraint also “unglues” the providers and
the destroyers of each agent ϕi. The providers now need not
ensure together that some condition is supplied, but each
provider worries only about the conditions it is explicitly re-
quested to supply. According to Lemma 2, as long as πi is
small, this formulation can buy us a lot.

Lemma 2 For any MA-STRIPS problem Π, and any δ > 0,
the constraint graph CGΠ;δ induced by the constraints C2-
C3 is independent of δ, and is isomorphic to the undirected
graph underlying IGΠ.

The proof of Lemma 2 is similar to that of Lemma 1, except
that now there is an edge between ϕi and ϕj in the con-
straint graph CGΠ;δ only if ϕi has public actions affecting
preconditions of an public action of ϕj (or vice versa).

Let us now consider more closely the complexity of
MA-planning with the reformulated constraint satisfaction
problems CGΠ;δ . The domain Di of each CSP variable ui

now captures

|Di| =
δ∑

d=1

(
kδ

d

)
· |Apub

i |d · (k2d)πi

=O((kδ|Apub
i |)δ+1) · δ(k2δ)πi

(3)

possible coordination sequences, where the first two multi-
plicative terms within the summation are as in Eq. 1, and
the third term captures the choice of who (k) supports when
(kδ) each of the πi public preconditions of the action. In
turn, the complexity of forcing the unary internal-planning
constraints C2 remains exactly as before, while the complex-
ity of checking the coordination constraints C3 can now be
done in time O(kD$+1), where $ is the tree-width of the
(undirected) agent interaction graph IGΠ. The overall com-
plexity of solving CSPΠ;δ is thus order of

f(I) · k(kδ|Apub|)δ+1 + k(kδ|Apub|)δ$+ε′ · (k2δ)πi$+ε′′ ,
(4)

Note that, as we already mentioned, the tree-width $ can be
substantially lower than the (induced by C1) tree-width ω,
possibly up to a reduction from Θ(k) to 1. Hence, the re-
duction of worst-case time complexity (indirectly) resulting
from extending the agents’ language of commitments from
messages used in C1 to more complex messages used in C3
can be exponential in the size of the multi-agent system.

Summary
We identified two parameters that quantify the coupling
level of a multi-agent planning problem. One is system
dependent—the tree-width of the agent interaction graph,
and the other is problem dependent—the minmax number
of coordination points per agent. When these parameters are
fixed, the complexity of planning scales only polynomially
with the size of the system.

Our results provide novel insights into the area of problem
decomposition, and they may also help guide the design of
such systems. That is, if we are to allocate actions to agents,

we should strive to minimize the tree-width of the result-
ing agent interaction graph. They also show how a special
type of single-agent planning problem is used to solve multi-
agent planning problems.

There are a number of natural issues for future work.
Of great interest is the design of more practical algorithms
guided by the theoretical insights of this paper. If based
on CSPs, these would require more efficient encodings of
the problem. Execution monitoring for such systems is also
an interesting topic, as the use of abstract time points gives
us flexibility to handle delays as well as work with asyn-
chronous systems.

References
Amir, E., and Engelhardt, B. 2003. Factored planning. In
IJCAI, 929–935.
Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when, and when not. In AAAI, 809–814.
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.;
Smith, D.; and Washington, R. 2002. Planning under con-
tinuous time and resource uncertainty: A challenge for AI.
In UAI, 77–84.
Clement, B. J.; Durfee, E. H.; and Barrett, A. C. 2007.
Abstract reasoning for planning and coordination. JAIR
28:453–515.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Durfee, E. H. 1999. Distributed problem solving and plan-
ning. In Multiagent systems: a modern approach to dis-
tributed artificial intelligence. 121–164.
Erol, K.; Hendler, J.; and Nao, D. S. 1994. HTN planning:
Complexity and expressivity. In AAAI, 1123–1128.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. AIJ 2:189–208.
Helmert, M. 2003. Complexity results for standard bench-
mark domains in planning. AIJ 146(2):219–262.
Kelareva, E.; Buffet, O.; Huang, J.; and Thiébaux, S. 2007.
Factored planning using decomposition trees. In IJCAI,
1942–1947.
Knoblock, C. 1994. Automatically generating abstractions
for planning. AIJ 68(2):243–302.
Moses, Y., and Tennenholtz, M. 1995. Multi-entity models.
Machine Intelligence 14:63–88.
Seymour, P. D., and Thomas, R. 1993. Graph searching and
min-max theorem for tree-width. Journal of Combinatorial
Theory 58:22–33.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint
programming. AIJ 170(3):298–335.
Wilkins, D. E., and Myers, K. 1998. A multiagent planning
architecture. In Int. Con. on AI Planning Systems, 154–162.
Yokoo, M. 2001. Distributed Constraint Satisfac-
tion: Foundations of Cooperation in Multi-agent Systems.
Springer.

ICAPS'08 Multiagent Planning Workshop

