Planning in Decentralized POMDPs with Predictive Policy Representations

Abdeslam Boularias and Brahim Chaib-draa
Department of Computer Science and Software Engineering
Laval University, Canada, G1K 7P4
{boularias,chaib} @damas.ift.ulaval.ca

Abstract

We discuss the problem of policy representation in stochastic
and partially observable systems, and address the case where
the policy is a hidden parameter of the planning problem. We
propose an adaptation of the Predictive State Representations
(PSRs) to this problem by introducing tests (sequences of ac-
tions and observations) on policies. The new model, called
the Predictive Policy Representations (PPRs), is potentially
more compact than the other representations, such as deci-
sion trees or Finite-State Controllers (FSCs). In this paper,
we show how PPRs can be used to improve the performances
of a point-based algorithm for DEC-POMDP.

Introduction

Decision making under state uncertainty is one of the great-
est challenges in artificial intelligence. State uncertainty is
a direct result of stochastic actions and noised, or aliased,
observations. Partially Observable Markov Decision Pro-
cesses (POMDPs) provide a powerful Bayesian model to
solve this problem (Smallwood and Sondik 1971). In this
model, the state is represented by a probability distribution
over all the possible states, that we call a belief state. The
complexity of POMDPs algorithms, which is proved to be
PSPACE-complete (Papadimitriou and Tsitsiklis 1987), de-
pends heavily on the dimension of the belief state. During
the last two decades, significant efforts have been devoted
to developing fast algorithms for large POMDPs, and nowa-
days, even problems with a thousand of states can be solved
within a few seconds (Virin et al. 2007).

The rise of applications requiring cooperation between dif-
ferent agents, like robotic teams, distributed sensors and
communication networks, has made the presence of many
decision makers a key challenge for building autonomous
agents. For this purpose, a generalization of POMDPs to
multi-agent domains, called DEC-POMDPs (Decentralized
POMPDs), was introduced in (Bernstein, Immerman, and
Zilberstein 2002), and since then, this framework has been
receiving a growing amount of attention. This research is ba-
sically motivated by the fact that many real world problems
need to be formalized as DEC-POMDPs, while planning

with DEC-POMDPs is NEXP-complete (Bernstein, Immer-
man, and Zilberstein 2002), and even finding €-optimal so-
lutions is NEXP-hard (Rabinovich, Goldman, and Rosen-
schein 2003).

Finding good solutions to DEC-POMDPs is so difficult be-
cause there is no optimality criterion for the policies of
a single agent alone: whether a given policy is better or
worse than another depends on the policies of the other
agents. Consequently, the dimensionality of the policy space
is a crucial factor in the scalability of DEC-POMDPs algo-
rithms. In this paper, we propose a new method for scaling
up Point Based Dynamic Programming (PBDP) algorithm
for DEC-POMDPs (Szer and Charpillet 2006), based on a
compact representation the policy space. Our approach is
based on the following observation: given a set of policies,
only a few sequences are necessary to represent all the poli-
cies. This method is an adaptation to DEC-POMDPs of an-
other approach that was originally proposed to reduce the
state space dimensionality in POMDPs, and which is known
as the Predictive State Representations (PSRs) (Littman,
Sutton, and Singh 2001b). In PSRs, states are replaced by
sequences of actions and observations that have linearly in-
dependent probabilities. Similarly, a poll of policies can be
represented by a smaller set of sequences that have linearly
independent probabilities of occurring in these policies.

The remainder of this paper is structured in the following
manner. We briefly review POMDPs and PSRs background
in Section 2, and introduce the Predictive Policy Represen-
tations in Section 3. In Section 4, we recall DEC-POMDPs
formalism and Dynamic Programming algorithms for DEC-
POMDPs. In Section 5, we describe how to accelerate these
algorithms by using predictive representations. Section 6
presents some empirical results of this method. We conclude
this paper with a discussion in Section 7.

A motivating example

Figure 1 represents a 3 x 3 grid world with two agents. If the
goal of each agent is to meet the other one, then each agent
must know the policy of the other in order to choose the best
policy leading to a meeting point. Usually, we use decision

ICAPS'08 Multiagent Planning Workshop

(e

¥

Figure 1: A multi-agent grid world environment.

trees to represent policies, every node of the decision tree
is labeled with an action a;, and every arc is labeled with
an observation o;. Ideally, every agent should know exactly
the actions of the other agent, but unfortunately, this cannot
be achieved when the agents are unable to communicate. In
fact, each agent knows exactly the policy of the other agent
at the beginning, and the first action of each agent can be
easily predicted, since it corresponds to the first node of ev-
ery local policy tree. But then, the next actions depend on
the local observations perceived by each agent, and without
communication, we can only consider a probability distribu-
tion over the actions (or the remaining subtrees) of the other
agent. This distribution for a given agent corresponds to a
distribution over the histories of observations of the other
agent. Figure 2 represents a set of possible policies for a
given agent. We can see that the number of policies grows
double exponentially with respect to the number of obser-
vations and the length of histories (the planning horizon).
Using decision trees to represent policies leads to a low scal-
ability of the planning algorithms. The main idea of PSRs is
to use a probability distribution over the possible sequences
of actions and observations instead of decision trees. The
number of sequences grows exponentially with respect to
the planning horizon, but only polynomially with respect to
the number of observations.

Background
Partially Observable Markov Decision Processes

Formally, a POMDP is defined by the following param-
eters: a finite set of hidden states S; a finite set of ac-
tions A; a finite set of observations Q; a transition function
P:SxAxS— [0,1], such that P(s|s,a) is the probability
that the agent will end up in state s’ after taking action a
in state s; an observation function O : A X § x Q — [0, 1],
such that O(o|a,s’) gives the probability that the agent re-
ceives observation o after taking action a and getting to state
s'; an initial belief state by, which is a probability distribu-
tion over the set of hidden states S; and a reward function

0, /b
v e
a a,
o/ 0 O

& & (& (&

Pr(q;) =0.25

(0] a1
v
aZ al
o/ %2 o/

a,) la, (a) (a
Pr(gqp) =0.25

0,/ & \0:
o/ % o

3, a3 (& &

Pr(qq) =0.25

Figure 2: A probability distribution over a set of policies.

R:SxA — R, such that R(s,a) is the immediate reward
received when the agent executes action «a in state s. Ad-
ditionally, there can be a discount factor, y € [0, 1], used to
weigh less rewards received farther into the future.

The sufficient statistic in a POMDP is the belief state b,
which is a vector of size |S| specifying a probability dis-
tribution over the hidden states. The elements of this vec-
tor, b(s;), specify the conditional probability of the agent
being in state s;, given the initial belief by and the history
(sequence of actions and observations) experienced so far.

Predictive State Representations

PSRs (Littman, Sutton, and Singh 2001a) are an alternative
model for representing partially observable environments
without reference to hidden variables. The fundamental idea
of PSRs is to replace the probabilities on states by probabil-
ities on future scenarios, called fests. A testt = a'o' ...a*o*
is an ordered sequence of actions and observations. The
probability of ¢ starting at step i is defined by:

Pr(t|h;) = Pr(oit1 =0',...01 = o |hiai = a',..aj = db)
where h; = a%0 ... a'o is the whole history until step i.

For a large category of dynamical systems, we can prove
that the probability of any test # depends only on the prob-
abilities of a few tests, called core tests, which constitute
a sufficient statistic for the system. We indicate the core
tests by ¢',4%,...¢". Q indicates the set of these tests, and
Pr(Q|h;) = (Pr(q'|h;),Pr(¢®|hj),...,Pr(q"|h;))T is the proba-
bility vector for the core tests at time step j, which is equiv-
alent to the belief state in POMDPs. For any test !, we have:

Pr(t'|h;) = f(Pr(Q|hy)) (1)

where f,; is a function associated to the test #', this function
is independent of the history %;, and allows us to calculate

ICAPS'08 Multiagent Planning Workshop

the probability of ¢/ by using only the probabilities of Q at
history ;. After executing an action a and perceiving an
observation o, the following Bayes function is used to update
the probabilities of the core tests:

faoqf (Pr(Q|h]))

B Pr(aoqi\hj) B @

Pr(q"hja()) - Pr(a0|hj) N fao(Pr(Q|hj))

Predictive Policy Representations (PPRs)

In PPRs, the roles of the actions and observations are

switched. The probability that a test t = 0°,a',...0" !, d*

succeeds is given by:

Pr(t|h) = Pr(ais =d', ... a4 = dhi,0i =0, ... 0j k1 = 0" 1)

The history h; ends with an action and not an observation
as in PSRs, because tests in PPRs start with an observation.
In fact, step i is the moment after executing a; and before
perceiving o;. We also consider that all the histories start
with a fictive observation o* which has probability 1 (the
default observation). A test in PPRs can be seen as a ques-
tion regarding what the agent will do when it perceives a
specified sequence of observations. PPR is different from
environment state based representations, where the actions
are related directly to physical states (or belief states), and
from Finite-State Controllers (Hansen 1998), where internal
states are defined, and the actions are chosen according to
these states.

After executing an action a and perceiving an observation o,
the following Bayes function is used to update the probabil-
ities of the core tests:

Pr(qi\hj()a) _ Pr(an ‘hj) — foaq’(Pr(Q|h])) (3)

Pr(oalhj) — foa(Pr(Qlh;))

We can see from this equation that to calculate the new prob-
ability of core test g after executing a and perceiving o,
we need only to know for the probabilities Pr(oag'|h;) and
Pr(oalhj) of the tests oa and oaq. These probabilities can
be calculated from the probabilities of core tests probabili-
ties Pr(Q|h;).

A Predictive Policy Representation is defined by the follow-
ing parameters:

0, the core tests list.

Pr(Q|0), the initial probabilities of the core tests.

Ya € A,Yo € O f,,, the function associated to test oa.
YacANocONg €Q: Joaqi» the function associated to
test oaq', composed by test oa followed by test ¢'.

If the function f, is linear, then it can be replaced by a vector
m,i, and the update function becomes:
Pr(oaq'|h;) mzaq,-Pr(Q|hj)

Pr(q'|hjoa) = Pr(oalh;) N ml Pr(Q|h;) @

The vector Pr(Q|h;) of core tests probabilities is used to cal-
culate the probability of selecting action a after perceiving
observation o. Indeed, we have: Pr(oalh;) = m!,Pr(Q|h;)

The policy matrix P is defined by the infinite set of all
possible tests and histories. An entry P(hj,t') is given by
Pr(t'|h;), the probability that the actions indicated in the test
¢! will be executed by the agent, such that the current history
of the system is /&; and the future observations will be the
observations indicated in #'. The core tests of a linear PPR
corresponds to a basis of the policy matrix P.

The following theorem makes a comparison between PPR
and Stochastic Finite-State Controllers. FSCs are a popular
model used to represent infinite-horizon policies. FSCs are
to POMDPs exactly what PPRs are to PSRs. Many policy
representations can be seen as a special case of FSCs, such
as decision trees or environment state based policies (as in
MDPs). The main result of this theorem is that PPRs of-
fer a representation that uses at most the same number of
parameters used in the equivalent FSC. However, at present
we have no general conditions under which PPRs are more
compact than FSCs, but we will give an example where this
is the case. The number of parameters considered here is the
number of core policy tests for the PPR, and the number of
states for the FSC.

A stochastic Finite-State Controller is a 3-tuple (S, y,n),
where S is a finite set of controller states s* (internal states,
not to be confused with the environment states), Y is a map-
ping from S to a probability distribution on A, s.z. Y(s;,a;)
is the probability to choose the action a; in the state s;. 1) is
a transition function, s.t. 1(s;,a;,0;,8:+1) is the probability
to transit from the state s; to the state s;;.; when we execute
the action g; and receive the observation o;.

Theorem 1. Every stochastic Finite-State Controller can be
transformed to an equivalent linear PPR using at most the
same number of parameters.

Proof. This proof uses an idea introduced in (Singh, James,
and Rudary 2004). Let P be the policy matrix cor-
responding to a given FSC. Since P(h,t) = Pr(t|h) =
Y s Pr(s|h)Pr(t|s), then we can decompose P into P = FB,
where F is a o x |S| matrix, defined by F(h,s) = Pr(s|h),
and B is a |S| x oo matrix, defined by B(s,t) = Pr(t|s). F
and B can be constructed by using the functions y and 7).
Since rank(F) < |S| and rank(B) < |S|, then rank(P) =
rank(FB) < |S|. The number of core policy tests needed
in the linear PPR model is at most equal to |S|, since the
core tests corresponds to linearly independent vectors in the
matrix P. O

Figure 3 shows a simple example of deterministic Finite-
State Controllers, which are a subclass of the stochastic con-

ICAPS'08 Multiagent Planning Workshop

Figure 3: A deterministic four-states controller that can be
represented with only two core tests t; = o1a; and t, = 02a;.

trollers. Every state is labeled with the action to be exe-
cuted in that state. This controller contains four different
states, but can be represented with only two core policy tests:
t1 = o1a; and t» = 0pap. The answers to these two tests are
sufficient to determine the state of the controller. For exam-
ple, if we have Pr(oja;|h) = 1 and Pr(osaz|h) = 0, then we
conclude that Pr(ozas|h) = 1,Pr(o2as02a2|h) = 1, and so
on (implicitly we are in the state of the action a,), we have
Pr(ozas|h) = Pr(ti|h)(1 — Pr(t2|h)) + (1 — Pr(t1]h))(1 —
Pr(tz]h)) = 1 — Pr(r2)h), and we can derive similar nonlinear
prediction rules for every sequence.

In the remaining of this paper, we will see how we can use
PPRs to represent policies in Decentralized POMDPs. How-
ever, adapting PPRs to dynamic programming algorithms re-
quires a quite complicated construction of the value vectors
(Boularias and Chaib-draa 2008), though the final algorithm
is simple. Thus, we will consider a greatly simplified version
of linear PPRs, where each test a;o;q' ~1is a pair of action
a; and observation o}, followed by a full decision tree g1,
instead of one sequence of actions and observations. We
will also treat all the tests as core tests, consequently, ev-
ery test ajo;q' ~1 will be explicitly represented, and we will
completely ignore the linear dependencies between tests.

Using PPRs in DEC-POMDP
Decentralized POMDPs

DEC-POMDPs, introduced in (Bernstein, Immerman, and
Zilberstein 2002), are a straight generalization of POMDPs
to multi-agent systems. Planning in DEC-POMDPs is gen-
erally centralized, but the execution is always decentralized:
each agent chooses its actions according to its own local his-
tory and policy, independently of the other agents.

Formally, a DEC-POMDP with n agents is a tuple
(1,S,{A;},P,{Q},0,R,T,v), where:

e [is a finite set of agents, indexed 1...n.
e S is a finite set of states.

e A; is a finite set of individual actions for agent i. A=

®ierA; is the set of joint actions, and d@ = {(ajy,...,a,) de-
notes a joint action.

e P is a transition function, P(s'|s,d) is the probability that
the system changes from state s to state s’, when the agents
execute the joint action d.

e Q; is a finite set of individual observations for agent i.

Q= ®ic1€; is the set of joint observations, and ¢ =
(01,...,0,) denotes a joint observation.

e O is an observation function, O(3|s’,d) is the probability
that the agents observe ¢ when the current state is s’ and
the joint action that led to this state was d.

e R is a reward function, where R(s,d) denotes the reward
(or cost) given to the action d in state s.

e T is the horizon of planning (the total number of steps).

e Yis a discount factor, generally used when T is infinite.

Planning algorithms for DEC-POMDPs aim to find the best
joint policy of horizon T', which is a collection of several lo-
cal policies, one for each agent. A local policy of horizon ¢
for agent i, denoted by ¢/, is a mapping from local histories
of observations 01'1 01-2 ... 0} to actions in A;. For clarity in the
remainder of this paper, we consider that we have only two
agents, i and j, and all the results can be easily extended to
the general case. The joint policy of horizon ¢ for agents i
and j is denoted by ¢ = (¢, ¢';). We also use Q, Q'; to indi-
cate the sets of local policies for agents i and j respectively,
and Q' for the set of joint policies. The multi-agent belief
state b; for agent i contains a probability distribution over
the system states S, and another probability distribution over
the current policies Q; of agent j. b;(s,q;) is the probability
that the system is in state s and the current policy of agent j
184j.

Dynamic Programming for DEC-POMDPs

Dynamic Programming is by far the technique most used
for solving multistage decision problems, where the optimal
policies of horizon ¢ are recursively constructed from the op-
timal sub-policies of horizon t — 1. This method has been
widely used for finding optimal finite horizon policies for
POMDPs since (Smallwood and Sondik 1971) presented the
value iteration algorithm. Recently, (Hansen, Bernstein, and
Zilberstein 2004) proposed an interesting extension of the
value iteration algorithm to decentralized POMDPs, called
Dynamic Programming Operator for DEC-POMDPs. We
review here briefly the principal steps of this algorithm.

The expected discounted reward of a joint policy ¢', started
from state s, is given recursively by Bellman value function:

Vi (s) = R(s,A(¢)) +7 ZSP(S'lsvx(qt)) Y. 0I5 A(d") Vi) (s))
s'€ 3eQs
©)

where X(q’) is the first joint action of the policy ¢’ (the root
node), @ is a joint observation, and (q") is the sub-policy of
q' below the root node and the observation 4.

ICAPS'08 Multiagent Planning Workshop

Input: Q;*I, Q’jfl and VI~
5, Qtj — quBaCkup(Qifl)’ fullBackup(Q’j’l);
Calculate the value vectors V! by using V'~ ! (Equation 5);

repeat
remove the policies of Q’j that are dominated (Table 1);

remove the policies of Q’j that are dominated (Table 1);
until no more policies in Q% or Q’j can be removed ;,
Output: O} ,Q’j and V/;

Algorithm 1: Dynamic Programming for DEC-
POMDPs (Hansen, Bernstein, and Zilberstein 2004).

The value of an individual policy ¢/, according to a belief
state b;, is given by the following function:

Vi) =X ¥ b d)Vig) ©

sES quQ’j

where (g}, ;) denotes the joint policy made up of ¢; and ¢,
V<q§’q3> (s) is given by equation 1.

The Dynamic Programming Operator (Algorithm 1) finds
the optimal policies of horizon ¢, given the optimal poli-
cies of horizon (# —1). V' is the set of value vectors V
corresponding to the joint policies of horizon ¢. First, the
sets O, Q’j are generated by extending the policies of 0!,
Q;'7!, and V' are calculated by using V/~! in equation I,
then the weakly dominated policies of each agent are iter-
atively pruned. The pruning process stops when no more
policies can be removed from Q; or Q. A policy ¢} is said
to be weakly dominated if and only if:

Vb; € A(S X Q’j),Elqﬁ»’ S Qi — {qi} qu/(bi) > qu (bl) @)

In other words, whatever the belief b; of agent i is, we can
always find another policy ¢’ that has a least the same ex-
pected value in b; as the policy g'.

From Algorithm 1, we can see that the DP operator spends
most of its time on determining the weakly dominated poli-
cies by checking the inequality (7) for every policy ¢;. Usu-
ally, a linear program is used for this purpose. The time
complexity of a linear program solver depends on the num-
ber of variables and constraints defined in the problem, so, it
depends directly on the number of policies and the way we
represent the beliefs over these policies.

Point Based Dynamic Programming

This later problem has been efficiently addressed with Point
Based Dynamic Programming (PBDP) algorithm proposed
by (Szer and Charpillet 2006). It makes use of top-down
heuristic search to determine which belief points will be
reached during the execution time, and constructs the best
policy from leaves to root with DP, by keeping only the poli-
cies that are dominant in the reachable belief points. The

most important difference between PBDP and exact DP is
the fact that inequality (7) is checked only for a finite set of
reachable belief points b;. Therefore, the runtime of this al-
gorithm is significantly small compared to the original DP
algorithm. An approximate version of PBDP consists in
considering only a small set of belief points that are reach-
able with a high probability. Memory Bounded Dynamic
Programming (MBDP)(Seuken and Zilberstein 2007) is a
fast algorithm that is close to PBDP, it is based on bound-
ing the maximum number of policies kept in memory af-
ter each iteration. PPRs can be used with PBDP as well as
with MBDP since the main difference between these two
algorithms is in the number of policies considered and not
the method used to represent these policies. For our experi-
ments, we implemented PBDP algorithm (Szer and Charpil-
let 2006) with randomly generated belief points in inequal-
ity (7), without considering if these points are reachable or
not. In fact, for the small problems used in DEC-POMDPs
literature, we found that there is no significant improvement
when we consider only the reachable belief points. Instead
of spending lot of time to find reachable belief points, we
consider a larger set of random belief points, generated at
the beginning of the algorithm, and every optimal policy will
be likely dominant in at least one of these points. However,
this heuristic does not guarantee that all the optimal policies
will be found.

Point Based Dynamic Programming with PPRs

We propose to use the Predictive Policy Representations in
order to reduce the dimensionality of belief points in PBDP
algorithm. To do so, we have to redefine the belief state and
the value vectors with PPRs. A belief state b;(s,a ;o jq‘jfl)
for agent i is the probability that the system is in state s, and
agent j will execute the action a;, and if the observation of
Jj will be o}, then the next policy of j will be q’j*l (q’j*l is
a decision tree). The only difference between this defini-
tion and the usual definition of multi-agent belief states is
that each tree q’j is factored at the first level and separated

into several components (tests) a;o thj_l, aj is the first ac-

t—1

tion (root) of the policy q’j, q; is the subtree of q’j under

action a; and observation o;. So, for each policy q’]-, we

have |Q j|\Q’j*l| corresponding tests. Generally, every test
is used in several policies, and the number of tests is much
smaller than the number of policies. This is particularly true
right after the exhaustive backup step of Algorithm 1, since
|05 = |A.,-HQ.’]71 |19 new policies are generated, while we
need only |A || |Q’]f1 | tests to represent all these policies.
Consequently, the size of a belief state defined over tests can
be exponentially smaller than the size of a belief state de-
fined over policies.

In order that a randomly generated belief over S and Qtj will

ICAPS'08 Multiagent Planning Workshop

be an accurate belief, we need only to guarantee that:

Z Z b(s,q;) =1

! !
seSqjed;

But to guarantee that a randomly generated belief over S and
AjxQjx Qtj_1 (the tests used to represent Q’j policies) will
be an accurate belief (i.e. defines a distribution over states
and policies), we should verify:

VOJ'EQJ'ZZ Z Z b(s7aj0thj'7l):1

“'ES“jGqu’j’leQ_’fl
/ .
Vaj EAj,VOj,Oj S Qj :

Y Y blsaoi; =) Y blsaoid;)

€S 1~ cpy—1 =y S g
7 €Q; q; €Q;

In fact, the sum Y cgd 151 b(s,al-giqtfl) is the proba-
q; Qj SO

bility that agent j will execute the action a j» and it must be
the same for any next observation o;. Contrary to decision
trees which are always mutually exclusive, the tests starting
with the same action and followed by different observations
are not mutually exclusive.

The value of a joint test (a;0;q; "

state s is:

,ajojq’]-”) started from

V<ai0iq§_l sajoj‘{l,'_l) (s)=

Y. Pr(s'ls, (ai,a;))Pr({oi,05)ls’,ai.a;)))R (s, (ai,a;))
s'eS

41 X Pr(s s) Pronsopls sV) (9)

The value of an individual policy ¢/, according to a belief
state b;, is given by the following function:

ng(bi):

Z Z Z Z bi(s, a./'o./'qtj'7 !)V(A(qﬁ)o; subtree,, (qf),(/z,-(),-q’j’I) (S)

s€SajeA; 0;€Q; qfflleil
0,€Q; 7

where A(q}) is the first action of the tree ¢!, and
subtree,, (q:) is the subtree of q§ under the observation o;.

We can verify that the value of any policy according a belief
point on states and policies is equal to its value according to
the corresponding belief point on states and tests.

Empirical Results

We implemented PBDP algorithm with both full decision
trees and our modified version of PPRs, and we compared
the performance of theses two approaches on three stan-
dard problems taken from DEC-POMDPs literature (Seuken
and Zilberstein 2007): MA-Tiger, MABC, and The Meeting
problem (with a 2 x 2 grid). The code of the implementation

120000 T T
110000 |
100000 |

T T T
PBDP with/Decision Trees —+—

90000
80000 -
70000
60000
50000

Runtime (ms)

40000 -
30000 -
20000
10000

0 &

Horizon

Figure 4: The effective runtime of the PBDP algorithm as a
function of the horizon, with the MA-Tiger problem.

1000 T T

T T T T
PBDP with Decision Trees —+—
900 PBDP with Predictive Representations ---x---

800 -
700
600 -

500

Runtime (ms)

400 |-

300 -

200

100

Horizon

Figure 5: The effective runtime of the PBDP algorithm as a
function of the horizon, with the MABC problem.

is written in C++, and the experiments were performed on a
1.73 GHz Pentium M processor, with a RAM of 512 Mo. In
our implementation, we relaxed the constraints on the tests
belief points, so some belief points may be useless, but they
can be quickly generated. We used 100 random belief points
for MA-Tiger, 25 random belief points for MABC, and 30
random belief points for The Meeting problem.

Figures 4, 5 and 6 show the runtime of the PBDP for dif-
ferent horizons. As expected, we can see that the runtime
of PBDP is significantly reduced when we use a predictive
representation of the policies. This is explained by the fact
that the belief points defined over tests are smaller than the
belief points defined over decision trees. Consequently, the
value of a given policy can be calculated with fewer opera-
tions, and the dominance test of inequality (7) is performed
in a shorter time. We noticed also that most of this compu-
tational gain is made right after the full backup, where the
belief points in decision trees approach contain a number of
policies which is exponential w.r.t. the number of observa-
tions.

Table 1 shows the values of of the policies returned by PBDP
are almost the same for the two policy representations. The

ICAPS'08 Multiagent Planning Workshop

80000 T T

PBDP with Decision Trees ——
PBDP with Predictive Representations ---x---
70000

60000
50000 |

40000

Runtime (ms)

30000

20000 |

10000

Horizon

Figure 6: The effective runtime of the PBDP algorithm as a
function of the horizon, with the Meeting problem.

Meeting =2 | =3 | =4 | =5 | =6 | =7 | t=8
Decision Trees 0 0.81 1.90 n.a. n.a. n.a. n.a.
PPRs 0.81 1.79 | 278 | 3.78 | 478 | 578 | 6.78
MA-Tiger | =2 | =3 | =4 | t=5 | t=6 | =7 | t=8
Decision Trees -4 5.19 4.80 n.a. n.a. n.a. n.a.
PPRs -4 5.19 4.39 4.21 2.27 0.41 -1.5
MABC =2 | =3 | t=4 | =5 | =6 | t=7 | t=8
Decision Trees 2 2.90 3.89 4.79 5.69 6.59 7.49
PPRs 2 299 | 3.80 | 479 | 5.60 | 650 | 7.49

Table 1: The values of the optimal policies returned by
PBDP using decision trees and PPRs to represent policies.

values with the PPR approach are slightly suboptimal be-
cause the belief points where under constrained, and since
we used a limited set of belief points, some optimal policies
were dominated in all these points.

Conclusion and Future Work

In many multiagent systems, the uncertainty of an agent is
not only about the environment states, but also about the
policies of other agents. In this paper, we proposed a new
model to represent the agent’s belief state based on pre-
dicting other agents future actions. The advantage of this
model, called Predictive Policy Representations (PPRs), is
that agents uses only a minimal and sufficient amount of data
to represent their beliefs. We compared the computational
performance of a point based algorithm for DEC-POMDP
using decisions trees to the performance of the same algo-
rithm using a simplified version of PPRs, and the prelimi-
nary results are promising. Based on these results, we tar-
get to develop a new Dynamic Programming algorithm, us-
ing the original definition of the PPR model and exploiting
the potential dependencies between different tests to reduce
even more the dimensionality of the belief points.

References

Bernstein, D.; Immerman, N.; and Zilberstein, S. 2002.
The Complexity of Decentralized Control of Markov De-
cision Processes. Mathematics of Operations Research
27(4):819-840.

Boularias, A., and Chaib-draa, B. 2008. Exact dynamic
programming for decentralized pomdps with lossless pol-
icy compression. In Proceedings of International Confer-
ence on Automated Planning and Scheduling (ICAPS’08).
To appear.

Hansen, E.; Bernstein, D.; and Zilberstein, S. 2004. Dy-
namic Programming for Partially Observable Stochastic
Games. In Proceedings of the 19th National Conference
on Artificial Intelligence (AAAI’04), 709-715.

Hansen, E. A. 1998. Solving pomdps by searching in pol-
icy space. In Proceedings of the 14th Conference on Un-
certainty in Artificial Intelligence (UAI’'98), 211-219.

Littman, M.; Sutton, R.; and Singh, S. 2001a. Predictive
representations of state. In Advances in Neural Information
Processing Systems 14 (NIPS’02), 1555-1561.

Littman, M.; Sutton, R.; and Singh, S. 2001b. Predictive
Representations of State. In Advances in Neural Informa-
tion Processing Systems 14 (NIPS’01), 1555—-1561.

Papadimitriou, C., and Tsitsiklis, J. 1987. The Complexity
of Markov Decision Process. Mathematics of Operations
Research 12(3):441-450.

Rabinovich, Z.; Goldman, C.; and Rosenschein, J. 2003.
The Complexity of Multiagent Systems: the Price of Si-
lence. In Proceedings of the second international joint

conference on Autonomous agents and multiagent systems
(AAMAS’03), 1102-1103.

Seuken, S., and Zilberstein, S. 2007. Improved
Memory-Bounded Dynamic Programming for Decentral-
ized POMDPs. In Proceedings of the 23rd Conference on
Uncertainty in Artificial Intelligence (UAI'07).

Singh, S.; James, M. R.; and Rudary, M. R. 2004. Predic-
tive state representations: A new theory for modeling dy-
namical systems. In Uncertainty in Artificial Intelligence:
Proceedings of the 20th conference (UAI’04), 512-519.

Smallwood, R. D., and Sondik, E. J. 1971. The Op-
timal Control of Partially Observable Markov Decision
Processes over a Finite Horizon. Operations Research
21(5):1557-1566.

Szer, D., and Charpillet, F. 2006. Point-Based Dy-
namic Programming for DEC-POMDPs. In Proceedings
of the 21th National Conference on Artificial Intelligence
(AAAI’06), 304-311.

Virin, Y.; Shani, G.; Shimony, S.; and Brafman, R. 2007.
Scaling Up: Solving POMDPs through Value Based Clus-
tering. In Proceedings of the Twenty-Second AAAI Confer-
ence on Artificial Intelligence (AAAI’07), 1290-1295.

ICAPS'08 Multiagent Planning Workshop

