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Abstract

DLIMIDs, which can represent decision problems with
partial observability and large horizons, constitute an al-
ternative to POMDPs, or rather, they can be viewed as
almost the same type of model with two different types
of policies and, consequently, two paradigms of evalua-
tion. In this paper, we describe a Markovian model for
carcinoid tumors and discuss the effect of evaluating it
as a DLIMID or as a POMDP.

1. Introduction

Limited-memory influence diagrams (LIMIDs), a formal-
ism for decision-making under uncertainty (Lauritzen and
Nilsson 2001), were later generalized to dynamic LIM-
IDs (DLIMIDs), a type of model that can represent both
finite- and infinite-horizon Markov processes (van Gerven
and Diez 2006; van Gerven et al. 2007). From the point of
view of the representation of decision problems, DLIMIDs
can be seen as an extension of factored POMDPs (Boutilier
and Poole 1996), as they allow to have several decisions
per time slice. Therefore, modeling issues are the same for
POMDPs and DLIMIDs, with the exception that in DLIM-
IDs it is necessary in general to introduce memory variables
(cf. Sec. 2.4) to circumvent the limited-memory restriction
that characterizes this type of models.

This paper is structured as follows: In Section 2. we of-
fer a review of the main properties of DLIMIDs, with spe-
cial emphasis on stationary DLIMIDs, which are the ba-
sis of infinite-horizon DLIMIDs. In Section 3. we present
three algorithms that can be used for evaluating infinite-
horizon DLIMIDs. The second and third of these algo-
rithms, namely, SRU and SA, have been used to evaluate the
medical DLIMID presented in Section 4., which constitutes
the core of this paper: in Section 4.1 we describe the con-
struction of the model and in Section 4.2 the process and the
results of evaluating it. In Section 5. we analyze the similar-
ities and differences between DLIMIDs and POMDPs and
discuss the lines open for future research, and we conclude
in Section 6.
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2. Background: DLIMIDs
2.1 Definition of DLIMID

A dynamic limited memory influence diagram (DLIMID) is
atuple £L = (h,C,D,U,G, P,U,~). In this tuple, h €
N* U {o0}, is the horizon. C is a set of chance variables.
D is a set of decision variables (actions). We assume in this
paper that all the variables in C and D are discrete. U is the
set of utility variables (rewards). Variables are indexed by
time: ¢ € {1,...,h}.

G is an acyclic directed graph containing a node for each
variable X*; for this reason we will use the terms variable
and node indifferently. Links to the past, i.e., of the form
Xt — Yt with t > #, are not allowed.

P is a set of conditional distributions, such that for
each variable X* in C and each configuration pa(X?) of
the parents of X' in the graph—that we call Pa(X*)—
there is a conditional probability distribution of the form
P(xt|pa(X?)). The join probability distribution for the vari-
ables in C, conditioned on the decisions, is

P(cld) = T] Pelpa(C)) (1
cec
In this equation, c is the result of projecting configuration
(c,d) onto C and pa(C) is the result of projecting (c,d)
onto Pa(C). The next equations in this paper must be un-
derstood in the same way.

Similarly, the set U contains, for each node U?, a function
u(pa(U?)), where pa(U?) is a configuration of the parents
of U* in the graph.

Finally, v € [0,1] is the discount factor. Usually v < 1,
which implies that delayed rewards are less valuable to the
decision maker.

The subgraph that contains all the nodes X having the
same temporal index ¢ and the links between them is known
as the t-th slice. We use C?, D?, and U? to denote the
chance, decision, and utility nodes at the ¢-th slice, respec-
tively. If there is a k € N* such that every link X* — Y
satisfies that ¢/ — ¢ < k, we say that the DLIMID is of k-th
order. In practice, it is usual to work with first-order DLIM-
IDs (k = 1).

2.2 Stationary DLIMIDs

A DLIMID of order k is stationary if the structure of the
graph, the probabilities, and the utilities repeat themselves



after the k-th slice, i.e., foreach ¢t > k + 1,

e there is a link X! — Y if and only if there is a link

Xk+1 Yk+1,

o P(zt|pa(X?t)) = P(zF*+1|pa(X*+1)), and
o Ul(pa(U*)) = UM (pa(U*HY)).

Given that the slices repeat themselves after the k-th, i.e.,
that all subsequent slices are the same as the (k+1)-th, we
can have a compact representation in which we only repre-
sent the first k+1 slices. If the horizon h of the DLIMID is
finite, we can unroll it completely by cloning the last slice
h — (k + 1) times. In the case of a first-order DLIMID,
which is the most common case, stationarity means that only
the first slice differs from the others and, hence, we can rep-
resent the DLIMID by only the first two time slices; this
compact form of DLIMIDs is very similar to the standard
representation of (factored) MDPs and POMDPs. Alterna-
tively, a DLIMID can be represented by a temporal LIMID
(TLIMID), which consists of a prior model £, representing
the initial state of the system, and a transition model L;, rep-
resenting the evolution over time; this representation is very
similar to the representation of dynamic Bayesian networks
using 2TBNs (Murphy 2002, Sec. 2.2).!

2.3 Policies and strategies

A link X — D, where X is a chance variable or a de-
cision and D is a decision, means that the value of X is
known when making decision D. For this reason, the par-
ents of D are also known as its informational predecessors.?
A stochastic policy for a decision D € D is defined as a
distribution Pp(d|pa(D)) that maps each configurations of
Pa(D) to a distribution over alternatives (i.e., actions) for
D; thus, Pp(d|pa(D)) is the probability of selecting alter-
native (action) d when the information available is pa(D).
If Pp is degenerate (consisting of ones and zeros only) then
we say that the policy is deterministic.

A strategy is a set of policies A = {Pp: D € D}, which
induces the following joint distribution over the variables in
CuUD:

Pa(c,d) = P(c:d) [ Pp(dlpa(D)) . 2)
DeD
We define
U(c,dy = > ulpa(U)), 3)
UteUt?

which is the utility for the ¢-th time slice for a configuration
(ct,d?) of Ct'UD". The utility for a configuration (c,d) of
C U D is defined as

h
Ule,d) =D ~U(c',d")
t=0

12TBNs were introduced in (Boutilier, Dean, and Hanks 1996).
The reason for representing DLIMIDs as TLIMIDs is the possibil-
ity of converting it into 2TBNs, as explained in Section 3.1.

YIn a LIMID and a DLIMID, the informational predecessors
or a decision are only its parents, while in an influence diagram the
informational predecessors of a decision are its parents and the par-
ents of any decision made before D—see (Lauritzen and Nilsson
2001; van Gerven et al. 2007).

and the expected utility of a strategy A as
EU(A) =) > Pa(c,d)-Uc,d). (4)
c d

The optimal strategy is the one that maximizes the expected
utility:
A* = arg max Ea(U). 5)

2.4 Memory variables

An important shortcoming of the limited-memory assump-
tion is that it may lead to neglecting important findings ob-
tained in the past. For instance, let us consider the case of a
patient who showed an allergic reaction to a drug in the past.
If we forget this fact and administer the same drug again, we
may cause more harm than benefit. Apparently, a situation
like this cannot be addressed with stationary DLIMIDs, be-
cause a stationary DLIMID is, by definition, of k-th order,

and therefore it cannot have an informational link F* — DY
with ' — ¢ > k; i.e., when making decision D at time ' we
cannot take into account the value of finding F* in a distant
past. In particular, in a first-order DLIMID, the informa-
tional predecessors of a decision variable D! can only occur
in time-slices ¢ or ¢ — 1. Thus, the limited-memory assump-
tion implies that observations made earlier in time will not
be taken into account and, as a result, states that are quali-
tatively different can appear the same to the decision maker,
which leads to suboptimal decisions.

However, there is a way of circumventing this problem: to
introduce in the DLIMID memory variables that represent
a summary of the observed history. In the above example
we may have a binary variable M indicating whether this
patient has ever had an allergic reaction to that drug or not.
Memory variables are not necessarily associated to chance
variables: we can also “remember” whether we have made
a decision (chosen a particular option) at any moment in the
past. This way, in a k-th order stationary LIMID, we can
add a memory variable M, of type chance (M € C), whose
parents are in the previous k slices. The domain of M and
the conditional probability tables for each M? will depend
on the meaning that the knowledge engineer assigns to this
variable.

For example, when variable M is intended to “remember”
the last &’ values of finding F', with &’ < k, the parents
of M* will be { F*=% =1 ... F'} If variable F represents
the result of a test, it may take on three values, {u,n,p},
where v stands for unobserved (test not performed), n for
negative, and p for positive, and we wish to remember the
last three values of F' (k' = 3) then the domain of M will be
Qnr = {u, n,p} x{u,n,p} x {u,n,p}, ie., M will have 27
possible values. The value of M? represented by upn means
that the test was not performed at time ¢t — 2, gave a positive
result at ¢ — 1, and a negative result at ¢. Alternatively, if
F' were binary and the purpose of M were to “remember”
whether F has ever taken a positive value, the parents of M*
would be M*~! and F'* and the conditional probability table
for M would be

tote1 ety 1 ifmtTl=gmitly ft = 4 ft
Ptmi|m™, f7) = { 0 otherwise



The advantage of memory variables is that they allow us
to keep information from the distant past and, at the same
time, to fulfill the Markov condition, which states that the
future is independent of the past given the present, i.e., the
current state of the system. This is just the function of mem-
ory variables, to augment the state of the system by includ-
ing information from the past.

Itis not always easy to decide the number of memory vari-
ables that should be introduced in a DLIMID and the mean-
ings of each one. We cannot think of any algorithmic pro-
cedure to make this decision. It is the knowledge engineers
who, using the available domain knowledge, their common
sense, and their experience, should make the best modeling
decisions.

3. Evaluation of infinite-horizon DLIMIDs

As finite-horizon DLIMIDs are a particular case of LIMIDs,
they can be evaluated with the methods proposed in (Lau-
ritzen and Nilsson 2001). On the contrary, infinite-horizon
DLIMIDs, which contain an infinite number of nodes, can-
not be solved with those methods. It is possible, however, to
use any of the three algorithms proposed in (van Gerven and
Diez 2006), that we describe briefly below. Given that all
the three need to compute the expected utility of strategies,
we first present a method for this task.

3.1 Computing the expected utility of a strategy

In order to compute the expected utility for a TLIMID, we
resort to an indirect approach, which combines the value it-
eration algorithm for MDPs (Bellman 1957) with the trans-
formation of influence diagrams (IDs) into Bayesian net-
works (BNs) (Cooper 1988).

Given a strategy A, Cooper’s method converts an ID with
chance variables C and decisions D into a BN. Each deci-
sion variable D in the ID is converted into a chance variable
in the BN whose conditional probability is given by the pol-
icy for D in A, namely Pp(d|pa(D)). Additionally, each
utility node U in the ID is converted into a binary variable
in the BN by means of a linear transformation such that the
minimum utility is mapped onto 0 and the maximum onto 1,
and this way each utility is converted into a probability. This
way it is possible to compute the expected utility EU(A)
given a strategy A by computing the probability of +u in
the BN and transforming back this probability into a utility
(Cooper 1988).

The same idea can be applied to LIMIDs and DLIMIDs.
We denote by B(L, A) the conversion of a LIMID L, given
a strategy A, into a Bayesian network B. Given A, we may
convert a TLIMID (L, £;) into the pair (B, B;), which is
a dynamic Bayesian network, where By = B(Lg, Ag) and
By = B(Ly,Ay); By is a two time-slice Bayesian network
(2TBN). This dynamic Bayesian network can be evaluated
with the methods proposed in (Murphy 2002); in fact, in our
experiments we used the BNT package (Murphy 2001).

In order to compute an approximation to the expected util-
ity for a (first-order) DLIMID given A, we assume that the
DLIMID can be represented by a TLIMID (Lo, £;) and A

3 A similar transformation was use by (2006) for solving MDPs.

can be expressed as a pair (Ag, A;), where Ay is the initial
strategy and A, is a stationary strategy that does not depend
on t. Recall that, for infinite-horizon Markov decision pro-
cesses (Ross 1983), the optimal strategy is deterministic and
stationary. However, in the partially observable case, we can
only expect to find approximations to the optimal strategy by
using memory variables that represent part of the observa-
tional history. The approximation EU"(A) to the expected
utility is made by computing the discounted expected utility
(v < 1) using (B(Lo, Ag), B(Lt, Ay)) for a finite number
of time-slices . Here, x may be chosen based on the prob-
lem characteristics, or based on some error criterion €. For
instance, by choosing

k= log, (e(1 —7)/2uUmax),

where umax stands for the maximum utility obtainable dur-
ing one time-slice, we ensure that at most €/2 error is intro-
duced into the approximation (Ng and Jordan 2000).

3.2 Single policy updating

The single policy updating (SPU) method proposed in (Lau-
ritzen and Nilsson 2001) for LIMIDs can be adapted to
infinite-horizon DLIMIDs by computing the expected util-
ity of the strategies with the method presented above. This
way we can obtain a strategy that is locally optimal, i.e., it
cannot be improved by changing just one policy.

In the case of LIMIDs, which include finite-horizon
DLIMIDs as a particular case, locally optimal policies can
be found by optimizing each single rule independently of the
others, such that we need to evaluate km" different policies
at each decision variable D, where k denotes the cardinal-
ity of Qp, and r is the number of informational predeces-
sors of D, assuming that the cardinality of 2p equals m
for all D’ € pa(D). However, in case of infinite-horizon
DLIMIDs, the optimal rule for a certain scenario at time ¢
depends on the policies applied at future times, which leads
to a coupling of the rules. The number of policies that need
to be evaluated at each decision variable D therefore grows
as k(mr), which makes SPU unfeasible even for many small
DLIMIDs.

3.3 Single rule updating

Given the impossibility of iterating over the set of policies
in DLIMIDs, we proposed in (van Gerven and Diez 2006)
a hill-climbing method, called single rule updating (SRU).
Instead of exhaustively searching over all possible policies
for each decision variable, we try to increase the expected
utility by local changes to the decision rules within the pol-
icy; i.e., at each step we change one decision-rule within the
policy, accepting the change when the expected utility in-
creases. Similarly to SPU, we keep iterating until there is
no further increase in the expected utility. Using SRU, we
decrease the number of policies that need to be evaluated in
each local cycle for a decision node to only km” (as when
applying SPU for LIMIDs), albeit at the expense of replac-
ing the exhaustive search by a hill-climbing strategy, which
further increases the risk of ending up in a local maximum,
and having to run local cycles until convergence.



3.4 Simulated annealing

In order to improve upon the strategies found by SRU, we re-
sort to simulated annealing (SA) (Kirkpatrick, Gelatt Jr, and
Vecchi 1983), which is a heuristic search method that tries
to avoid getting trapped into local maximum solutions found
by hill-climbing techniques. SA chooses candidate solutions
by looking at neighbors of the current solution as defined
by a neighborhood function. Local maxima are avoided by
sometimes accepting worse solutions according to an accep-
tance function. In (van Gerven and Diez 2006), we used the
acceptance function

Lif eu’ > eu
P(a(A")=yes | eu, eu’,t) = { e —eu

e T® otherwise ,

where a(A’) stands for the acceptance of the proposed strat-
egy A', ew’ = EUY(A'), eu = EU"(A) for the current
strategy A, and 7T represents the temperature in an anneal-
ing schedule defined as

T(t+1) = a-T(t)

where T'(0) =  with @ < 1 and § > 0. The annealing
schedule ensures that initially a random search through the
space of strategies is performed, which gradually changes
into a hill-climbing search. We refer to (Eglese 1990) for a
discussion about choices that can be made for SA parame-
ters  and 3. With respect to strategy finding in dynamic
LIMIDs, we propose an initial simulated annealing scheme
and a subsequent application of SRU in order to greedily
find a local maximum solution.

An experiment with a small LIMID for a hypothetical
problem, using 20 different initial strategies A°, showed that
in most of the cases SA yields better strategies than SRU
(van Gerven and Diez 2006). It also showed that in general
it is possible to reach an additional increase in the expected
utility by applying SRU after SA. We will see in Section 4.2
that SA gives better results than SRU also for the medical
model presented in this paper.

4. A DLIMID for treating carcinoid tumors

We have applied DLIMIDs to the problem of treatment se-
lection for high-grade carcinoid tumor patients.* A car-
cinoid tumor is a type of neuroendocrine tumor predomi-
nantly found in the midgut and is normally characterized by
the production of excessive amounts of biochemically active
substances, such as serotonin.> The dynamic decision prob-
lem then is whether or not to administer chemotherapy at
each decision moment.

In order to solve this problem, we have constructed a
DLIMID as a model of high-grade carcinoid tumor patho-
physiology in collaboration with an expert physician. Our
aim is to validate if the treatment strategy that is used in

*Although a patient’s life-span is bounded, it is useful to
describe a treatment selection problem as an infinite-horizon
POMDP, where the process has an exponentially decreasing but
non-zero probability of continuing at each time slice.

SFurther details and medical references used to build this model
can be found in (van Gerven et al. 2007).

practice will also be found by a TLIMID as a formal domain
model, thereby confirming the quality of the employed strat-
egy. If the policy returned by the DLIMID differs from that
applied by human doctors, we should perform a sensitivity
analysis, first parametric and then structural, to find out the
cause of the disagreement. This would lead to a refinement
of the model, for instance, by adding other relevant vari-
ables, or to the conclusion that the strategy currently used in
practice is not optimal and should be changed.

4.1 Description of the model

Figure 1 depicts the structure of the model, where shaded
variables are observable. Since patients return to the clinic
for follow-up every three months, we assume that each time
slice represents patient status at three-month intervals, at
which time treatment can be adjusted.

In the model, the patient’s general health status (ghs) is
of central importance. In oncology, one way to estimate the
general health status is by means of the performance sta-
tus, which is distinguished into normal (0), mild complaints
(1), ambulatory (2), nursing care (3), intensive care (4), and
death (5). Modeling the evolution of ghs is a non-trivial
task; it depends on the current general health status, and on
patient properties such as age and gender, since these are
risk factors that may lead to patient death due to causes other
than the disease. Furthermore, ghs is influenced by the tu-
mor mass (mass) and the treatment strategy. Tumor mass
has a negative influence on the general health status and is
the first cause of death for patients with high-grade carci-
noid tumors. Hepatic metastases normally account for the
majority of the tumor mass and the primary tumor does not
normally contribute significantly to the tumor mass.

Most patients with high-grade tumors have extensive
metastatic disease when admitted to the hospital. If there
is no tumor response due to treatment then the physician
estimates an exponential growth in tumor mass: z(t) =
xo - e 41* If there is a tumor response due to treatment
then we will see a reduction in tumor mass according to
Table 1. If no chemotherapy is given, then we use nt (no
treatment) to denote the absence of tumor response. Finally,
if ghs = dead then there is no change in tumor mass.

Chemotherapy (chemo), with states {none, reduced,
standard}, is the only available treatment to reduce tu-
mor growth. We use treathist with states {0,1,2,3} as
a memory variable to represent the patient’s relevant treat-
ment history, such that treathist = ¢ represents continued
chemotherapy over the past ¢ trimesters. Reductions in tu-
mor mass due to chemotherapy are often described by means
of the WHO criteria for tumor response (bmdhist), as de-
fined in Table 1. If a patient has been treated previously, then
the effectiveness of treatment changes. In case resp(t—1) is
either pr or cr, then it is assumed that continued chemother-
apy will lead to stable disease (sd). If, on the other hand,
resp(t — 1) = sd then continued chemotherapy will be-
come less effective. Even when chemotherapy is discon-
tinued, we expect some residual effect of chemotherapy due
to the knock-out effect on tumor-cells. It is estimated that
after three months, the effect of chemotherapy is at 70% of
its normal effectiveness.
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Figure 1: TLIMID for high-grade carcinoid tumor pathophysiology. Chemotherapy has not yet been given at the initial time,
which renders the tumor response to chemotherapy (RESP) independent of all other variables at L.

Table 1: The WHO criteria for tumor response.

Tumor Response Criteria

Complete remission (cr)
Partial remission (pr)
Progressive disease (pd)
Stable disease (sd)

Note that chemotherapy may have both positive and neg-
ative effects on general health status. Positive due to re-
ductions in tumor mass, and negative due to severe bone-
marrow depression (bmd) and damage associated with pro-
longed chemotherapy. Severe bone-marrow depression may
cause patient death due to associated neutropenic sepsis
and/or internal bleeding. We use bmdhist with states
no-bmd and bmd as a memory variable to represent whether
or not the patient has experienced bmd in the past. No de-
cision variable has been defined that determines whether or
not to assess bmd status, since this status is assumed to be
given by routine laboratory tests.

The global utility is defined as a discounted additive com-
bination of the quality of life (qol) and the cost of chemother-
apy (cost):

U =>"~"(qol'(ghs’) — cost’(chemo")) .
t=0
Our measure of quality of life is based on quality-adjusted
life-years, or QALYs (Weinstein and Stason 1977), which si-
multaneously captures gains in quantity and quality of life.
QALYs are computed by multiplying a quality-adjustment
weight for each health state by the discounted time spent in
this state. We associate quality-adjustment weights with the
states of ghs based on the quality of well-being scale, taking

Disappearance of all lesions.

More than 50% decrease in tumor mass.

More than 25% increase in lesions, or a new lesion.
Neither pr nor pd.

into account that each time slice stands for a three-month pe-
riod (Table 2). We have associated a small economical cost
with chemotherapy, that is regarded insignificant compared
with the benefit gained in terms of quality of life.

Table 2: Quality-adjustment weights for ghs.

ghs | o | 1 | 2 | 3 | 4 |5
weight | 0.214 | 0.184 | 0.168 | 0.121 | 0.109 | 0.000

In our model, we used a discounting factor of 0.95 as sug-
gested in the literature, such that the three-month discount
factor is v ~ 0.987. The expected utility then becomes:

EU(A) = Ea <§n: vtqolt(ghst))> -

t=0

Ea (Z 'ytcostt(chemot))> .
t=0

The first term in Eq. (6) is the discounted quality-adjusted
life expectancy (QALE) and the second term is the dis-
counted expected cost of treatment. The goal of our model
then is to find a policy for chemotherapy that maximizes this
expression.

(6)



The physician has indicated that the informational prede-
cessors of chemo are given by ghs, treathist and bmdhist,
where both treathist and bmdhist are used as memory vari-
ables within the model. Changes in treatment history are
specified as follows. Given that chemo equals standard
or reduced, treathist increases from z to x + 1 until the
maximum of 3 is reached, and given that chemo = none,
treathist decreases from x to « — 1 until the minimum of 0
is reached. In order to represent whether or not a patient has
ever experienced bone-marrow depression, we assume that
bmdhist = no-bmd if bmd = no and bmdhist = no-bmd.
Otherwise, it is assumed that bmdhist = bmd. Note that
in this case, we represent memory of infinite length by re-
stricting ourselves to the event whether or not severe bone-
marrow depression has occurred. Contrary to what may be
expected, cga, as a correlate of tumor mass, is not regarded
to be an informational predecessor by the physician since a
patient who is known to have a high-grade carcinoid tumor
is treated as often as possible, irrespective of the current state
of the tumor.

4.2 Evaluation of the model

Our aim was to find a treatment strategy for high-grade car-
cinoid tumors using the developed model and the described
algorithms. We applied the simulated annealing scheme, fol-
lowed by SRU, as suggested in Section 3.4. Since the infor-
mational predecessors are equal for chemo in £y and £,
we assumed that Ag = A;. We use A to denote this strat-
egy, containing a stationary policy for chemo. The number
of possible policies for chemo is then given by:

Qe e} .
QCI—?EhN?O treathist ™ “bmdhist _ 35.4.2 ~1.92.10%9 .

Note that single policy updating would require an exhaus-
tive search through this space of possible policies, which is
clearly computationally intractable. For our model, we have
used x = 40 as the stopping criterion for the approximation
to the expected utility, based on the observation that ten-year
survival is rarely attained for this aggressive form of cancer.
After some initial experiments, we have chosen o = 0.995,
B =0.5and Tyin = 1.225 - 1073 for the simulated anneal-
ing parameters.

1.8
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Figure 2: Change in EU"(A) for the treatment strategies,
selected during simulated annealing, followed by single rule
updating at the end.

The SA algorithm was repeated twenty times, starting
from random initial strategies. It consistently found the
same treatment strategy A, with an expected utility of 1.795.
Figure 2 shows the subsequent values of EU"(A) of the
strategies found during one of these experiments. The figure
depicts how the initial explorative behavior of the simulated
annealing scheme gradually changes into a hill-climbing
strategy. The application of single rule updating after the
simulated annealing phase caused a small increase in ex-
pected utility from 1.795 to 1.798. For this particular ex-
ample, the solution found by simulated annealing (followed
by SRU) was the same as the solution found by SRU alone,
although this does not hold in general.

0o 4—{ chemo = standard }7
fon
01 ——{ chemo = none ’:I 03
-
03 ——{ chemo = reduced ’7
Figure 3: Policy graph for the best strategy that was
found by simulated annealing, where o; = ghs > 3, oo

= ghs < 3 A bmdhist = no-bmd and o3 = ghs <3 A
bmdhist = bmd.

A strategy for a DLIMID can be represented by a policy
graph (Meuleau et al. 1999); a finite state controller that
depicts state transitions, where states represent actions and
transitions are induced by observations. The policy graph for
this medical problem is shown in Figure 3. We can see that
the policy only depends on the patient’s general health status
(ghs) and on the antecedents of severe bone-marrow depres-
sion (bmd), summarized in the memory variable bmdhist,
while it does not depend on the treatments applied previ-
ously, as summarized in variable treathist, which implies
that this memory variable was not necessary.

The experts collaborating with us confirmed that this is
the policy that they apply in clinical practice.

5. Discussion

5.1 Knowledge engineering of DLIMIDs and
POMDPs

DLIMIDs and factored POMDPs are very similar in their
structure: both contain chance variables (some of which are
observable and some are not), decisions, and utility nodes.
An advantage of DLIMIDs is that they may include several
decisions per time slice; for instance, whether to perform
a test or not, and whether to apply a therapy or not, possi-
bly depending on the result of the test—see a toy example
in (van Gerven and Diez 2006; van Gerven et al. 2007).
POMDPs cannot easily represent this kind of problems. In
many domains, it may be an important reason for building a
DLIMID instead of a POMDP.

Given that the DLIMID for carcinoid tumors presented
above only contains one decision per time slice, it can be



viewed and evaluated as a POMDP, which has two unob-
servable variables (the mass of the tumor, mass, and the
response to the treatment, resp), seven observable variables
(the seven shaded ovals on the right part of Figure 1), one
decision (chemo), and two rewards (quality of life, qol, and
the cost of the chemotherapy).

The main difference would be in the returned policies. In
a DLIMID, the policy for a decision depends on its infor-
mational predecessors, which are a subset of the observable
variables.® Therefore, if all the informational predecessors
are discrete, then the domain of the policy is discrete, as in
the case of fully observable MDPs.” In our medical model,
the informational predecessor for the only decision, chemo,
are the global health state (ghs) and two memory variables,
bmdhist and treathist, that represent the antecedents of se-
vere bone-marrow depression and the previous treatments;
however, after the evaluation it turned out that the policy
does not depend on treathist. Reciprocally, we might have
included more variables in the domain of the policy, as we
discuss below.

On the contrary, in the most usual way of solving
POMDPs, the policy depends on the belief states of the un-
observable variable and the solution is expressed as a par-
tition of the belief space. In a factored POMDP, the pol-
icy may depend on both the belief state of unobservable
variables and on the configuration of observable variables,
which makes the solution much more difficult to commu-
nicate. This is an advantage of evaluating this model as a
DLIMID, because the policy shown in Figure 3 is very clear
and intuitive.

However, an alternative way to solve a POMDP is to build
a finite-state controller (Hansen 1998; Meuleau et al. 1999).
This way, the algoritms presented in this paper can be under-
stood as a way of building finite-state controllers for factored
POMDPs, thus reducing the difference between DLIMIDs
and POMDPs.

We would like to conclude this section with two remarks.
First, we said at the beginning of the paper that POMDPs
do not need memory variables, because they store the his-
tory of observations implicitly in the belief state of non-
observable variables. Then, one might think that when eval-
uating the model for carcinoid tumors as a POMDP we can
get rid of the two memory variables bmdhist and treath-
ist without affecting the performance of the model. How-
ever, this is not true, because in this case the model would
not take into account the influence of chemotherapy into
the global health state, which is mediated by variables bmd
and treathist—see Figure 1. If we removed bmdhist and
treathist from the POMDP, we would need to add unob-
servable variables to represent two features specific of each

SPlease note that the algorithms for the evaluation of DLIMIDs
allow that the policies depend on unobservable variables. How-
ever, such policies would be useless, because it would impossible
to make a decision based on information that is not available.

"In this sense, DLIMIDs are similar to factored fully observable
MDPs (FOMDPs), but the latter assume that all the variables are
observable and that policies depend on all the variables. Therefore,
DLIMIDs are a generalization of FOMDPs and permit to solve a
much wider range of problems.

patient: the response to chemotherapy and the probability of
suffering from severe bone-marrow depression. Therefore,
building POMDPs avoids the difficulty to make modeling
decisions about memory variables, but may require to in-
clude additional unobservable variables in the model; choos-
ing the domain and obtaining the conditional probabilities
for such variables may be as difficult as introducing mem-
ory variables.

Second, when building a DLIMID we have to de-
cide which variables are allowed to make part of the do-
main of each decision, i.e., to be “observed”—or, better,
“remembered”’—by the decision maker at each moment. In
our DLIMID the decision about chemotherapy was based
on three observations: ghs, bmdhist, and treathist. We can
see that in Figure 3 there is an information link from each of
them to the decision node therapy. We did not draw links
from age or gender to therapy because we assumed, using
domain knowledge, that the treatment policy does not de-
pend on the patient’s gender and age. But perhaps it was a
wrong assumption. This difficulty of selecting the informa-
tional predecessors of each decision in a DLIMID is avoided
when building a POMDP, but, on the other hand, DLIM-
IDs give us more flexibility, because the fewer variables we
include for each decision, the faster the algorithms will be
and the easier the policies will be to understand for human
users. This way, we can reach a trade-off between computa-
tional complexity, intuitiveness of the solutions, and higher
expected utilities, while in POMDPs we do not have this de-
gree of freedom.

5.2 Future work

One of the lines for future research is the development of
other algorithms for DLIMIDs that avoid as much as possi-
ble getting trapped in local maxima without incurring exces-
sive computational costs. A possibility would be the appli-
cation of well-known optimization methods such as genetic
algorithms or tabu search.

Another line of research is related with the use of mem-
ory variables. As mentioned above, the evaluation of the
DLIMID showed that the policy does not depend on treat-
hist, but perhaps if we had modeled this variable such that it
summarized previous treatments in a different way, it would
be relevant for the policy and might have led to an increased
expected utility. In same way, the inclusion of more vari-
ables in the policy for decision chemo, such as age and
gender, might also increase the expected utility. It is a pos-
sibility that should be tested empirically.

We might also compare the expected utility obtained
when evaluating the carcinoid model as a DLIMID with that
obtained when evaluating it as a POMDP. There are several
algorithms for DLIMIDs and many for POMDPs, based on
different approximations and heuristic techniques. Thus, we
have a chance to trade-off reduction in expected utility in
order to save time and space.

It would also be interesting to analyze how intuitive the
policies returned by each model are for human users. For our
carcinoid model, the policy obtained when evaluating it as
a DLIMID (see Fig. 3) is very easy to understand, but other
policies containing more variables in their domains might at-



tain higher expected utilities, as mentioned above; this is an-
other possible trade-off: intuitiveness vs. quality of the pol-
icy. On the other hand, we believe that these DLIMID poli-
cies, having discrete domains, would be much more intuitive
for human users than the POMDP policies based on parti-
tions of the belief state, but it is something that we should
prove empirically. We should also compare our algorithms
with those proposed for building finite-state controllers that
represent near-optimal policies for POMDPs.

There is, finally, another research line also related with the
methods that build controllers for POMDPs: how to adapt
them to DLIMIDs, which may contain several decisions per
time slice.

6. Conclusion

Both POMDPs and DLIMIDs are designed for Markovian
infinite-horizon problems in which only some of the vari-
ables can be observed. DLIMIDs can be seen as a general-
ization of factored POMPDs, as they allow to have several
decisions per time slice. In fact, a DLIMID having only
one decision per time slice, such as the carcinoid model
presented in this paper, can be interpreted and solved as a
POMDP, and vice versa. Therefore, we can say that they are
not two different types of models, but two ways of evaluat-
ing a model.

There are, however, subtle differences from the point of
view of knowledge engineering. DLIMIDs in general need
memory variables to summarize past observations, while
POMDPs summarize the whole observed history implicitly
in the belief state the unobservable variables. However,
it does not imply that when interpreting and evaluating a
DLIMID as a POMDP we can always remove the memory
variables; it may be necessary to replace them with hidden
variables.

If a POMDP is evaluated as a DLIMID without intro-
ducing memory variables, in general we will obtain a much
lower expected utility. But if is an open issue to determine if
a model including memory variables gives higher expected
utilities when evaluated as a DLIMID than when evaluated
as a POMDP, or vice versa. It would also be interesting
to study which policies are easier to understand by human
users.
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