
Towards a POMDP-based Intelligent Assistant for Power Plants

Alberto Reyes Ballesteros
Instituto de Investigaciones Eléctricas
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Abstract

This extended abstract presents a decision support sys-
tem based on decision-theoretic planning techniques.
Its goal is to provide power plant operators with useful
recommendations to (i) maintain a plant running under
safe conditions, and (ii) to deal with process transients
when an unexpected event occurs. We use the formal-
ism of partially observable Markov decision processes
as the core of an intelligent assistant for combined-cycle
power plants, comment some preliminary results, and
discuss some ideas about how to deal with uncertain
plant states.

Introduction
In many industrial processes, plant operators are faced with
a large amount of problems and information based on which
they have to make decisions. To support such decisions, au-
tomatic assistants that provide operators with a list of sug-
gested commands can be used (Reyes et al. 2003). Either
when the operator executes a command or when a unex-
pected disturbance occurs, a new list of recommended ac-
tions is presented. This recommendation process can be
modelled as a sequential decision problem under uncertainty
with an optimization criteria such as performance, availabil-
ity, reliability, or security. Thus, we suggest the use of Par-
tially Observable Markov Decision Processes (POMDP), a
well known stochastic method for sequential decisions.

In the context of our application, intelligent assistants (IA)
are knowledge-based systems for the decision support that
provide suggestions and criticisms during the decision mak-
ing process (Aamodt and Nygard 1995). In this work, we
present a problem where an intelligent assistant should pro-
vide operators with on-line guidance in the form of ordered
recommendations. The system will allow to deal with ab-
normal situations, unexpected events, or the occurrence of
process transients under uncertainty conditions.

Problem Domain
In order to illustrate how important the decisions of a hu-
man operator are to overcome problems or to optimize op-
erations, we have selected an electric load disturbance in the
steam generation system of a combined cycle power plant.
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Figure 1: Simplified diagram of the steam generation sys-
tem. The gas turbine exhaust is not shown. Thin lines deno-
tate instrument connections to pipelines and process equip-
ment (bold lines)

A heat recovery steam generator (HRSG) is a process ma-
chinery capable of recovering residual energy from the ex-
haust gases of a gas turbine to heat up water. Eventually, the
outlet of the HRSG is a mixture of steam and water (Ffw)
flowing to thesteam drumthrough the feedwater valve (fwv).
The steam drum is a special vessel whose main function is
the efficient separation of mixture that guarantees dry steam
flow to thesteam turbine. This steam flow is regulated by
the main steam valve (msv). The recirculation pumpis a
device that extracts residual water from the steam drum to
keep a water supply in the HRSG. The result of this process
is a high-pressure steam flow (Fms) in thesteam turbinethat
produce electric energy (g) in a power generator. The com-
plete process control domain is shown in Fig. 1.

An electric load rejection (d) is an exogenous event
caused by a sudden load disconnexion that could induce ab-
normal state transitions in the process. Under these circun-
stances, the current control systems are not efficient and hu-
man intervention is required.



A practical solution is the use of an intelligent operator
assistant providing recommendations about how to correct
the problem. The operator assistant should be able to find an
action policy according to the crisis dimension, take into ac-
count that sensors are not perfect and that actuators can pro-
duce undesired effects. Furthermore, it should consider the
performance, availability and reliability of the actual plant
installations under these situations.

Partially Observable Markov Decision
Processes

A partially observable Markov decision process (POMDP)
(Kaelbling, Littman, and Cassandra 1998) models a sequen-
tial decision problem, in which a system evolves over time
and is controlled by an agent. At discrete time intervals the
agent partially observes the state of the system and chooses
an action. In a POMDP there is a set of observations labels
O and a set of conditional probabilitiesP (o|a, s), o ∈ O,
a ∈ A, s ∈ S, such that if the system makes a transition
to states with actiona, it receives the observation labelo
with probabilityP (o|a, s). A standard technique for find-
ing an optimal policy for a POMDP is to construct an MDP
whose states are the belief state of the original POMDP; that
is, each state is a probability distribution over states in the
POMDP, with beliefs maintained based on the observation
labels using Bayes’s rule. A form of value iteration can
be performed in this space using the fact that each finite-
horizon policy will be convex and piecewise linear.

Preliminary results and discussion
We have used an MDP-based intelligent assistant (Reyes,
Spaan, and Sucar 2009) to run a series of preliminary exper-
iments. In this work, the control strategy followed the idea
of looking for plant states with the highest utility that, when
analyzed by an expert operator, was near-optimal in most of
the state space. A drawback of an MDP model is that is as-
sumes that all the state variables relevant for decision mak-
ing are observed without noise, while real-world sensors are
prone to noise. Furthermore, there might be situations that
cannot be detected directly using the available sensors. In
this case the state observed by the MDP is no longer Marko-
vian, and hence the value of the computed policies will no
longer be accurate.

For instance, during normal operation, the conventional
three-element feedwater control system (3eCS) commands
the feedwater control valve (fwv) to regulate the steam
drum level (Ld). However, when a partial or total electric
load rejection is presented this traditional control loop is not
longer capable to stabilize the drum level. In this case, the
steam-water equilibrium point changes, causing an enthalpy
change of both fluids (steam and water). Consequently, the
enthalpy change causes an increment in the water level be-
cause of a strong water displacement to the steam drum. The
control system reacts by closing the feedwater control valve.
However, an increment of feedwater is needed instead of a
decrement.

Also, the mood or emotional state of an operator is a very
important variable which is not observed directly. After all,

in a decision support system, it is the operator who finally
closes the control loop (e.g., who executes the recommended
action).

To tackle at the same time the problem of noisy sen-
sors and limited observability, we propose using POMDPs.
Efficient algorithms for approximately solving factored
POMDPs are available (Poupart 2005), and no global
changes to the original MDP-based operator assistant archi-
tecture have to be made.

We can model the load rejection problem detailed above
by adding a (binary) state variable that models whether or
not a load rejection is occurring. This variable cannot be ob-
served directly, but we maintain a belief whether its true or
false. This belief can be updated (using Bayes’ rule) given
observations of the other state variables, as they can give a
clue about its state, for instance because actions do not have
the intended effect. In a POMDP formulation such clues can
be directly coupled to the state of the load-rejection variable.
Adding the variable in a POMDP setting will allow the sys-
tem to consider the possibility of a load rejection, and to
optimize the policy in case it happens, even if it cannot be
detected directly. Also, observations regarding the stateof
the operator can be included in this model.

To conclude, these techniques can also be successfully ap-
plied to similar domains. For instance, either in power in-
dustry or petroleum industry there are a number of different
chemical processes to control optimally that cannot be de-
tected directly. Among them we could mention: oil refine-
ment, water treatment, cooling systems, and oil production.
In electric power systems, the electric distribution process is
other that could be effectively solved using POMDPs.
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