Running uC/OS on the X32 Soft Core
M. Dufour, S. Woutersen, A.J.C. van Gemund

Embedded Software Lab Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

March 2006

1 Introduction

We describe how to use uC/OS [2], a simple, preemptive, multitasking RTOS, in combination with
the X32 soft core [1]. We also describe how we have modified uC/OS and the X32 to operate
together.

2 Using uC/0S

In this section, we provide an overview of the most important uC/OS functions and examples of
their usage. We also describe how to create interrupt service routines in an uC,/OS application.

2.1 Overview

The function 0SInit should always be called first. Besides initializing the uC/OS datastructures,
this function creates an idle task, that is run when there are no other ready tasks. Any tasks,
semaphores, etc. should be created after calling 0SInit. To actually start multitasking, the
function 0SStart is used to switch to the highest-priority ready task.

The function 0STaskCreate is used to create up to 62 tasks, each of which should have a differ-
ent priority. These limitations allow uC/OS to quickly determine the highest-priority ready task
at any time. The following shows the arguments that are passed to 0STaskCreate:

OSTaskCreate(func_name, task._arg, stack_space, priority);

The first argument is the name of a function that implements the task’s behaviour. The second
argument allows for an initial argument to be passed to the function, so that multiple tasks can
be implemented with a single function. The third argument points to some preallocated memory
space, to be used as the task’s working stack. The final argument is the task’s priority, ranging
from 1 to 62 (63 is used for the idle task). The lower the number, the higher the priority.

Each time tick (an interrupt generated by a hardware timer at a fixed time interval), uC/OS
determines the highest-priority ready task. If this is not the current task, it preempts the current
task, and performs a context switch. Tasks can also yield ’voluntarily’, by calling the 0STimeDly
function (a single argument determines after how many time ticks the task should become ready
again), or by blocking on some resource (e.g., a queue or something protected by a semaphore).

The following shows a minimal example of how the mentioned functions can be used together.
Two tasks are created, that print their initial argument at each time tick, in the order of their
priorities:

#include <ucos.h>

void *taskl_stack[1024];
void *task2_stack[1024];



void task(void *arg) {
while(TRUE) {
printf(‘“%d\n’’, (int)arg);
0STimeD1ly(1);

}

int main() {
0SInit();
OSTaskCreate(task, (void *)8, taskl_stack, 1);
0STaskCreate(task, (void *)9, task2_stack, 2);
/* insert other initialization code here */
0SStart();

}

This example repeatedly outputs “89”, because the task with argument 8 has a higher priority
than the task with argument 9. (Note that uC/OS works with void * types in many places, so we
have to cast objects with other types.)

uC/OS provides basic support for semaphores, queues and mailbozes. For each of these, it
additionally provides a non-blocking function to check their state.

To create a semaphore, the function 0SSemCreate is used. A single argument denotes its initial
counter value. Therefore, an argument of 1 can be used to create a binary semaphore. To pend
on a semaphore, the function 0SSemPend is used. One of its arguments is a timeout value, used to
unblock the task after a certain number of time ticks. Setting it to WAIT_FOREVER (defined as
0) disables the timeout. If a timeout occurs, this is indicated via the third argument. To post to a
semaphore, the function 0SSemPost is used. These functions respectively increment and decrement
the semaphore counter. The non-blocking version of 0SSemPend is called 0SSemAccept. If the
counter is 0, the resource protected by the semaphore is not available, so 0SSemAccept returns 0.
Otherwise, it decrements the counter and returns its value! . This means that 0SSemPost should
be called to increment the counter once more.

The following example shows how to use these functions to create and use a binary semaphore:

#include <ucos.h>
void *task_stack[1024];

UBYTE err; /* used to store error codes */
0S_EVENT *pSem; /* pointer to semaphore object */

void task(void *arg) {
while (TRUE) {
0SSemPend (pSem, WAIT FOREVER, &err);
printf(‘‘got the semaphore once\n’’);
0SSemPost (pSem) ;

if (0SSemAccept (pSem)) {
printf(‘‘got the semaphore twice\n’’);
0SSemPost (pSem) ; /* increment counter */

IThis instruction is akin to the test-and-set instruction, sometimes found at the hardware level, which atomically
tests a bit value, and sets the bit if it was 0.



}

0STimeDly (1) ;

}

int main() {

0SInit();
0STaskCreate(task, 0, task_stack, 1);
pSem = 0SSemCreate(1); /* 1 means binary semaphore */

0SStart();

}

To create a mailboz, the function 0SMboxCreate is used. In uC/OS, mailboxes can only contain
a single message. The argument of 0SMboxCreate denotes the initial message. If it is 0, the mailbox
is initially empty. 0SMboxPost is used to post a message. 0SMboxPend and 0SMboxAccept, like the
corresponding semaphore functions, are used to pend on or check the state of the mailbox. When
available, they return the current message.

To create a queue, the function 0SQCreate is used. It accepts two arguments, that should point
to preallocated space for the queue, and its size. To pend on, post and check the state of a queue,
similar functions as for mailboxes are used, called 0SQPost, 0SQPend and 0SQAccept. The following
example shows how to create a queue.

#define queue_size 32
void *queue[queue_size];

0SQCreate(queue, queue_size);

2.2 Interrupts

In a typical hardware setup, there are multiple interrupt sources, such as hardware timers, UART’s
and I/0 lines, each with an associated, hardware dependent interrupt number. Typically, these
numbers are unique; if not, the respective interrupt handler either does not know or may have to
spend cycles to find out the specific type of interrupt.

In real-time systems, certain interrupts are also typically more time-critical than others. For
example, when dealing with in- and output, data often has to be read or written quickly, or it
may be overwritten. Therefore, each interrupt (number) is typically associated with a user-defined
priority. Interrupt service routines are preempted whenever a higher-priority interrupt occurs, and
resumed when all higher-priority interrupts have been handled. In a way, this makes them similar
to tasks, but with even higher priorities.

Aimed at providing multitasking capabilities, uC/OS has only rudimentary support for dealing
with interrupts. It does not provide interrupt handling services, such as declaring interrupt han-
dlers. This means the low-level X32 library [1] must be used for this purpose. The following shows
an example of how to setup an interrupt service routine (ISR).

#include <x32.h>
SET_INTERRUPT_VECTOR (INTERRUPT_BUTTONS, isr_buttons);

SET_INTERRUPT_PRIORITY (INTERRUPT_BUTTONS, 10);
ENABLE_INTERRUPT (INTERRUPT_BUTTONS) ;



For this to work, there must be function named isr_buttons, with no arguments or return type.
We assume INTERRUPT_BUTTONS to be a predefined interrupt number (in our setup, it is defined
in x32.h). The priority can be practically any number larger than 0, but for portability sake, we
suggest using a number from 1 to 15. In contrast to uC/OS priorities, a higher number here means
a higher priority!?.

Because interrupt service routines may wake up a high-priority task, or cause the current task
to be suspended, uC/OS needs to know when all interrupts have been handled, so that it can
determine if a context switch is necessary. This is achieved by keeping track of interrupt nesting,
that may occur because of ISR preemption: if the nesting depth becomes 0, all interrupts have been
handled. uC/OS provides two functions to keep track of interrupt nesting, called 0SIntEnter and
0SIntExit. These functions must be called by the user on entry and exit of each ISR, respectively.

The following example shows how to create an interrupt service routine to count the number of
interrupts, caused by pressing some button. To be able to respond quickly, it delegates the job of
printing the counter to a separate task>.

#include <ucos.h>
#include <x32.h>

void *task_stack[1024];

#define queue_size 32
void *queue mem[queue_size];

UBYTE err;
O0S_EVENT *queue;

int counter = 0;

void isr_ buttons() {

0SIntEnter(); /* should always be called on entry */
0SQPost (queue, (void *)counter++);
0SIntExit () ; /* should always be called on return */

}

void task(void *arg) {
int i;
while(TRUE) {
i = (int)0SQPend(queue, WAIT FOREVER, &err);
printf (¢ ‘%d\n’’, i);

}

int main() {
0SInit();

SET_INTERRUPT_VECTOR (INTERRUPT_BUTTONS, isr_buttons);
SET_INTERRUPT_PRIORITY (INTERRUPT_BUTTONS, 10);
ENABLE_INTERRUPT (INTERRUPT_BUTTONS) ;

2The name ’setvect’ originates from the concept of ’interrupt vector’, a table in memory that describes the ISR
(and in case of the X32, the priority) associated with each interrupt (number).

3Note that printing some characters, e.g., via a ’slow’ RS232 connection takes a very large amount of time, when
compared to executing individual instructions.



0STaskCreate(task, (void *)0, task_stack, 50);
pQueue = 0SQCreate(queue_mem, queue_size);

0SStart();

}

In Appendix A, we provide a reference description of the most important uC/OS functions.

3 Porting uC/OS to the X32

In this section, we describe how we have modified uC/OS and the X32 processor to operate to-
gether. First, we explain how we implement context switching. Second, we explain how (prioritized)
interrupts are handled.

3.1 Context Switching

Context switching is typically implemented using the standard C setjmp and longjmp functions.
The setjmp function saves the processor state (its registers) and the address of the top of the
current working stack. The longjmp function restores these again, allowing us to resume a task
from the point where setjmp was called.

The return value of setjmp is used to differentiate between a normal return and the result of a
longjmp (and possibly between different calls to longjmp). If setjmp returns normally, the return
value is 0. If it is resumed as a result of a longjmp, it returns the value given by the programmer
as the argument to longjmp.

The following example shows how we can use the setjmp and longjmp functions to implement
(cooperative) multitasking in uC/OS:

#include <setjmp.h>

void task(void *arg) { /* example task */
while (TRUE) {
0STimeDly(1); /* this function calls the scheduler */
}

}

void 0SSched() { /* uC/0S scheduler */
/* determine if we need to switch to a new task */

/* if so: perform context switch */
if (setjmp(current_task->state) != 0)
return; /* we came here via longjmp: resume task */

/* otherwise, jump to new task */
longjmp(new_task->state, 1); /* causes setjmp to return 1 */

}

To enable preemption, we simply cause 0SSched to be called each time tick, using a hardware
timer interrupt. The respective interrupt service routine simply calls 0SSched, using the current



working stack, so that the current task continues after it returns (i.e., when it is switched to later
on).

The setjmp and longjmp functions are separate functions, because they can also be used for
other purposes than multitasking. The non-local jumps they enable can, for example, also be used
to implement features similar to exception-handling in C. (Consider a function jumping back to
main, after some error condition has occurred.)

Because the X32 is stack-based, the stack may change between calling setjmp and longjmp,
complicating their implementation. For our single purpose of context switching, we combine the
two using a single function. It relies on the X32 CALL, SAVESTATE and RET instructions to save and
restore processor state. (Most state is on the stack of course, but some additional registers are used
to manage the stack.) It further uses the LOADFP and SAVEFP instructions to store and restore the
top of the current working stack.

The following figure shows the stack before executing a CALL instruction, and after executing
CALL and the first few instructions of the called function, that are always the same:

a) before CALL b) after CALL, SAVESTATE, etc.

top of stack

SP

A

ret. address

cpu state

FP

A

stack frame

A

SP

The CALL instruction pushes the return address on the stack. The SAVESTATE instruction next
pushes the processor state on the stack. The following instructions create a local stack frame for
the called function. The SP register always points to the top of the stack, and the FP register to
the start of the local stack frame.

The RET instruction works as follows. First, it assigns FP to SP, in essence removing the local
stack frame. Next, it pops the processor state and return address from the stack, and jumps to the
return address.

Our context switch function simply saves FP, so that the RET instruction can later be used to
resume the current task. In pseudo-code, the function looks like this (of course, the RET instruction
is implicit here):

void context_switch(task *current_task, task *new_task) {
current_task->fp = FP; /* save pointer to current state */
FP = new_task->fp; /* prepare cont.sw. through RET */

}

To switch to a task for the first time, we need to setup its stack and FP register such that the
processor state is correctly initialized, i.e., the RET instruction pops the correct initial processor
state, including the initial execution address, from the stack. We also need to place a task’s initial
argument on the stack. We setup the FP register and initial stack for each task in the uC/OS
function 0STCBInit, that is called when a task is created.



3.2 Interrupts

The work of handling (prioritized) interrupts must be somehow divided between hard- and software.
One extreme approach is to do as much as possible in software. In this case, hardware is only
used to notify the software when an interrupt occurs, by jumping to a general interrupt handler.
The interrupt handler then resolves the correct interrupt number and priority, and keeps track of
interrupt nesting. The result is a very simple, flexible, and (from a hardware perspective) cost-
efficient solution. However, a software approach comes with certain overheads, that are especially
undesirable in real-time systems. Consider, for example, several low-priority interrupts arriving,
while servicing a high-priority interrupt: the interrupt handler is called several times, dramatically
increasing the response time of the high-priority interrupt.

To be able to respond quickly to high-priority interrupts, we implement support for multiple
interrupts and priorities in the X32 processor. Located at a fixed (virtual) memory address, an
interrupt vector contains both the address and priority of each interrupt. At all times, the processor
maintains an interrupt level, corresponding to the priority of the interrupt currently being serviced.
New interrupts are either handled directly, if their priority is higher than the current level, or
delayed until all higher-priority interrupts have been handled. If a new interrupt is to be handled,
the processor raises the interrupt level to the respective priority and jumps to the respective address
in the interrupt vector.

There are two types of nesting issues. First, we need to restore the interrupt level once an
interrupt is handled. This is done (in hardware) by pushing and popping the interrupt level on/off
the stack, for every (interrupt) CALL and RET instruction, respectively. Second, uC/OS must be
able to perform a context switch, if necessary, to a different task than the current task, once all
interrupts are handled, i.e., when the interrupt nesting depth becomes 0. To accomplish this, we
require the programmer to manually add calls to 0SIntEnter and 0SIntExit on function entry
and exit, respectively, as mentioned in Section 2.2.

Because an interrupt may be preempted by a higher-priority interrupt before 0SIntEnter is
called, the interrupt nesting depth may become 0, while there are still interrupts waiting to be
serviced. To avoid performing a context switch in such cases, we modify 0SIntExit to also look at
the interrupt level on the stack, to see if other interrupts should be finished first.

The following figure illustrates how our combined architecture solves the aforementioned nesting
issues, for a combination of different tasks and interrupts:

interrupt level 1 —_—————

interrupt level 2

task level 1

task level 2 —_—
a)

Let us walk through the different transitions indicated in the figure. While running a low-
priority, level 2, task, a level 2 interrupt occurs (transition a). Because all tasks run at the lowest-
possible interrupt level, the processor decides to service the interrupt. It places the current interrupt
level on the stack, raises the interrupt level to 2 and passes control to the respective interrupt service
routine. The interrupt service routine, in turn, calls 0SIntEnter, so uC/OS knows the interrupt
nesting depth is now 1.

While the level 2 interrupt is being serviced, a high-priority, level 1, interrupt occurs (transition
b). The processor decides that it should preempt the interrupt that is being serviced. Again,



it places the current interrupt level (2) on the stack, and raises the current interrupt level to 1.
Another call to 0SIntEnter now increments the interrupt nesting depth to 2.

The current interrupt level is only increased when an interrupt service routine is first called.
This means that, whenever an interrupt handler calls an uC/OS or user-defined function (transition
¢), the current interrupt level does not change. The current interrupt level is simply placed on the
stack by the CALL instruction, and restored by the RET instruction (t¢ransition d).

When the level 1 priority interrupt is handled, its service routine calls 0SIntExit, so uC/OS
knows the interrupt nesting depth is again 1. Via the RET instruction, the processor now restores
the state of the low-priority interrupt, including its interrupt level (transition e).

When the level 2 priority interrupt is handled, its service routine also calls 0SIntExit, so the
interrupt nesting depth is 0. Because it is 0, uC/OS now checks that there are no other interrupts
waiting to be serviced and directly switches to the high-priority, level 1, priority task that happens
to have become ready somewhere during interrupt servicing (transition f).

References

[1] Woutersen S., X32 Resource Site, http://x32.swoutersen.nl

[2] Labrosse J.J., uC/OS Website, http://micrium.com

A uC/OS Function Reference

In this appendix, we present a reference description of the most important uC/OS functions (in
alphabetical order).

e void 0SInit(void)

Initialize uC/OS data structures, and create a low-priority idle task. This function should
always be called, before calling any other uC/OS function!

e void 0SIntEnter(void)
Increment counter that maintains interrupt nesting depth. This function should always be

called on entry of an interrupt service routine.

e void 0SIntExit(void)

Decrement counter that maintains interrupt nesting depth. If the counter becomes 0, check
to see if all interrupts have been handled, and perform a context switch if necessary (e.g.,
because a high-priority task has become ready).

e void *0SMboxAccept (0S_EVENT *pevent)

Determine if a message is available in mailbox *pevent, without suspending the current task
if not (as opposed to 0SMboxPend). Return the message if available and clear the mailbox.
Otherwise, return 0.

e OS_EVENT *0SMboxCreate(void *msg)

Create and return mailbox, with initial message *msg (0 means no initial message). An
uC/0OS mailbox can only contain a single message.



void *0SMboxPend(0S_EVENT *pevent, UWORD timeout, UBYTE *err)

Determine if a message is available in mailbox *pevent, while suspending the current task if
not (as opposed to 0SMboxAccept). If no message becomes available, make the current task
ready again after timeout time ticks (wait forever if timeout is 0), set *err to 0S_TIMEQUT
and return 0. Otherwise, set *err to 0S_NO_ERR and return the message.

UBYTE 0SMboxPost (0S_EVENT *pevent, void *msg)

If there are tasks pending on mailbox *pevent, send *msg to the highest-priority task, switch
to this task and (when the current task is resumed) return 0S_NO_ERR. Otherwise, return
0S_MBOX_FULL if there already is a message in the mailbox, or place the message in it, and
return 0S_NO_ERR.

void *0SQAccept (0S_EVENT *pevent)

Determine if a message is available in queue *pevent, without suspending the current task if
not (as opposed to 0SQPend). Return the message if available and remove it from the queue.
Otherwise, return 0.

0S_EVENT *0SQCreate(void **start, UBYTE size)

Create and return queue of maximum size size. Memory should be preallocated at loca-
tion start. The following example creates a queue of size 32:

#define QSIZE 32
void *queue[QSIZE];
0S_EVENT *pqueue = 0SQCreate(queue, QSIZE);

void *0SQPend(0S_EVENT *pevent, UWORD timeout, UBYTE *err)
Determine if a message is available in queue *pevent, while suspending the current task
if not (as opposed to OSQAccept). If no message becomes available, make the current task

ready again after timeout time ticks (wait forever if timeout is 0), set *err to OS_TIMEOUT
and return 0. Otherwise, set *err to OS_NO_ERR and return the oldest message.

UBYTE 0SQPost(0S_EVENT *pevent, void *msg)
If there are tasks pending on queue *pevent, send *msg to the highest-priority task, switch
to this task and (when the current task is resumed) return 0S_NO_ERR. Otherwise, return

0S_Q_FULL if the queue has reached its maximum size, or place the message at the back of the
queue, and return 0S_NO_ERR.

UWORD 0SSemAccept (0S_EVENT *pevent)

Return current counter of semaphore *pevent and decrement it, if greater than 0 (the task
is not suspended, as opposed to 0SSemPend). Otherwise, return 0.

0S_EVENT *0SSemCreate (UWORD cnt)

Create and return semaphore, with initial counter value cnt. Note that a value of 1 results
in a binary semaphore.

void 0SSemPend(0S_EVENT #*pevent, UWORD timeout, UBYTE *err)



If the counter of semaphore *pevent is greater than 0, decrement the counter, set *err to
0S_NO_ERR and return. Otherwise, suspend the current task (as opposed to 0SSemAccept). If
the counter does not become greater than 0, make the current task ready again after timeout
time ticks (wait forever if timeout is 0), set *err to 0S_TIMEOUT and return. Otherwise, set
*xerr to 0S_NO_ERR and return.

e UBYTE 0SSemPost (0S_EVENT #*pevent)

If there are tasks pending on semaphore *pevent, switch to the highest-priority task and
(when the current task is resumed) return 0S_NO_ERR. Otherwise, increment the semaphore
counter and return 0S_NO_ERR.

e void 0SStart(void)

Start actual multitasking: enable the timer used for task preemption and switch to the
highest-priority ready task. This function is typically called after the user has created all
necessary tasks, semaphores, etc.

e UBYTE OSTaskCreate(void (0OS_FAR *task) (void *pd), void *pdata, void *pstk, UBYTE
p)

Create new task, with task body pd, initial argument pdata, preallocated working stack
pstk and priority p. (The priority can range from 1 to 62; a lower number means a higher
priority.) Return 0S_PRIO_EXIST if there already exists a task with the same priority, or
0S_NO_ERR otherwise.

e void 0STimeDly(UWORD ticks)

Suspend the current task for ticks time ticks.

B Porting Details

In this appendix, we show exactly where and how we modify uC/OS to operate on the X32. More
specifically, we explain how we implement critical sections, context switching and preemption, and
how we modify 0SIntExit to check if there are other interrupts waiting to be serviced (Section
3.2).

Critical Sections A “critical section” is a part of a program that can by no means be interrupted.
To ensure uC/OS does not corrupt itself (e.g. starting a context switching during a context switch),
most of its code is defined inside critical sections.

uC/0S defines two macros, to disable and enable interrupts at the start and end of critical
sections, respectively. The X32 has no STI/CLI (set interrupt flag, clear interrupt flag) instruction
pair, but uses a “global” interrupt to enable/disable all other interrupts. We use it to fill in the
mentioned macros, as follows:

#define OS_ENTER_CRITICAL() \
{ DISABLE_INTERRUPT (INTERRUPT GLOBAL); }
#define O0S_EXIT_CRITICAL() \
{ if (OSRunning) ENABLE_INTERRUPT (INTERRUPT GLOBAL); }

10



Context Switching Although the described context switch code has been made obsolete by the
addition of similar functions to the X32 library, the working remains the same. The following code
fragments reflect our switch to the new functions.

To initialize a task’s working stack, we call init_stack, as follows (ucos.c::08TCBInit):

ptcb->state[0] = (int)init_stack((void#**)stk, (voidx)task, (voidx)pdata);

The arguments are a pointer to preallocated space for the working stack, the address of the
respective task body and the task’s initial argument. The address of top of the initially created
stack is stored in the task’s “task control block”, and can be used to start the task later on.

To switch between tasks, we call context_switch, passing the address of the top of the target
task’s stack (osspec.c::0SCtxSw). To ensure the critical section around the call is maintained
correctly, we set the X32 interrupt level to 1000 beforehand (this means no interrupt with priority
under 1000 is serviced, i.e., all non-critical interrupts) and enable interrupts globally. When RET is
executed to make the final switch to the target task, the task’s interrupt level is restored; because
the global interrupt flag is still on, normal interrupts are now serviced again.

set_execution_level(1000);
ENABLE_INTERRUPT (INTERRUPT_GLOBAL) ;
context_switch((void**) (OSTCBCur->state[0]), (void*x*)&(prev->state[0]));

Preemption To enable preemption, we use a specific X32 timer interrupt, with a priority of 50.
The ISR calls the uC/OS scheduler to see if a task with a higher priority than the current task has
become ready at this point, and if so, switch to it (ucos.c::0SStart).

isr_alarm() {
0STimeTick();
0SSched () ;

}

peripherals [PERIPHERAL_TIMER1_PERIOD] = 20 * CLOCKS_PER.MS;

SET_INTERRUPT_VECTOR(INTERRUPT_TIMER1, isr_alarm);
SET_INTERRUPT_PRIORITY (INTERRUPT_TIMER1, 50);
ENABLE_INTERRUPT (INTERRUPT_TIMER1) ;

Interrupt Nesting As explained in Section 3.2, an interrupt may be preempted by another in-
terrupt before it has had a chance to call 0SIntEnter. This means the interrupt nesting level that
uC/0OS maintains may become 0, while there is still an interrupt waiting to be serviced. To avoid
scheduling, and finish waiting interrupts instead, we check the execution level on the stack, to see
if the current ISR has interrupted another ISR (ucos.c::0SIntExit).

fp = (unsigned int *)_get_fp(Q);
fp = (unsigned int *) (x(fp-1));
exec_level = *(fp-4);

if ((.. && exec_level == 0) {

The first line uses an X32 library call to get a pointer to the current stack frame (the stack
frame of the call to 0SIntExit). The second line loads a pointer from this stack frame, to the stack
frame above it (the stack frame of the call to the ISR). The third line loads the saved execution

11



level from this stack frame (the execution level of the code interrupted by the ISR). On the fourth
line, we make sure only to schedule if the execution level is 0, i.e., the ISR did not interrupt another
ISR.

12



