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Chapter 1

Introduction

The X32 is a 32-bit softcore designed for the Spartan 3 Starter Board. The design of the X32
is based on a top-down design approach, which starts at the programming language and ends
at the processor. The LCC Compiler is used to convert ANSI C programs in the intermediate
language of the LCC Compiler: LCC Bytecode. LCC Bytecode is a complete hardware-
independent assembly language, and consists of nothing more than a simplified version of
the C programming language. The LCC Bytecode instruction set is used as instruction set
architecture for the X32 softcore. The top-down approach caused the X32 to be designed in a
relative small amount of time, which allows it to be available free of charge. The compatibility
with the C programming language is also very good due to the top-down approach (although
no floating point unit is available), which makes programming the X32 very easy.

The performance of the X32 is somewhat limited due to the top-down design, as the
design of the softcore did not take any hardware specifications into account, however, the
compatibility with the programming language causes the X32 to outperform most conven-
tional microcontrollers such as the 6052 and the 8051, and is only a factor 20 slower than the
highly optimized Pentium 4 processor on equal clockspeeds. More information on the design
of the X32 can be found in The X32 Softcore: A top-down approach on processor design [10].

The featureset of the X32 softcore includes:

e 32-bit processor core
e Works out of the box on a 400K Gates Spartan 3 FPGA

e Support for the buttons, switches, leds, display, RS232 connection and 1MB SRAM
memory located at the Spartan 3 Starter Board

e Complete toolchain including an ANSI C Compiler

e Most of the C standard library available

e Interrupt system with configurable priorities and interrupt vectors
e Out of memory, division by zero and overflow protection

e X32 Configuration system using C header files, allows unique peripheral sets for any
situation

This manual describes how to install the X32 and it’s toolchain, and use all of the sup-
ported features.



Chapter 2

Installation

This chapter handles the installation and configuration of the X32 and its tools. The X32
and its toolset comes in three different packages.

The X32 tools package contains several programs to compile and upload C programs to
the X32. This package must be installed by anyone wanting to develop software for the X32.
The installation of the tools is described in Section 2.1. The second package contains the
X32 source code. This package is required by anyone who wants to make changes to the X32
design. Section 2.2 handles the installation and compilation of the X32 source code. Finally,
the X32 binary package contains the bit files of all standard X32 configurations, and can be
used by anyone who wants to use, but not alter the X32 design. How to use the X32 binaries
is described in Section 2.3.

2.1 X32 Tools Installation

The X32 tools contain all programs required to compile a C program into an X32 executable,
as well as an upload utility to upload programs to the X32, and a bytecode interpreter
(instruction simulator), which can run X32 executables without the need of any additional
hardware.

The X32 tools are required to develop and test software for the X32. They must also be
installed when working on the X32 itself, or any X32 extensions.

2.1.1 Requirements

The following applications must be installed on the system before installing the X32 tools:
e GCC Compiler
o GNU Make

For Windows, the GCC Compiler, and GNU Make can be downloaded as part of the MinGW
Project which can be downloaded from sourceforge [9]. On most Linux systems, these pro-
grams are already installed. Check the manuals of your distribution for more information.

2.1.2 X32 Tools Installation

1. Download x32-tools.tgz from the download site [3].
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2. Extract the archive to your hard drive (the package does not contain an installer, this
will be the directory the tools will run from).

3. Compile the tools using the supplied makefiles, Makefile.linux for Linux, Makefile.windows
for Windows. Execute make -f Makefile.linux for Linux, or
mingw32-make -f Makefile.windows for Windows.

4. Set the X32TOOLDIR environment variable to the full path name of the x32-tools/bin
directory created after extracting the package. Check the help files of your operation
system on how to set environment variables.

5. Set the X32LIBDIR environment variable to the full path name of the x32-tools/1ib-x32
directory created after extracting the package.

6. Add the x32-tools/bin directory to your PATH environment variable (optional).

7. To use X32 configuration specific code, the X32 library (x32.h, x32.c1) must be copied
or linked into the x32-tools/1ib-x32. These files depend on the X32 configuration,
and are created after building the X32. The precompiled libraries for the standard
configurations can also be extracted from x32-binaries.tgz, which can be downloaded
from the download site [3].

The X32-tools contain two batch files (setup_X32 for Linux, setup_X32.cmd for Windows)
which setup all environment variables automatically. These scripts can be added to the startup
scripts, to set the environment variables. On Linux, it might be required to execute
source setup_X32 instead of ./setup_X32.

2.2 X32 Source Code Installation

The X32 source code must be installed to make modifications to the X32, or build a new
custom configuration of peripheral devices and X32 settings. The X32 tools must be installed
prior to installing the X32 source code. When a default configuration of the X32 is to be
used, it is also possible to download the standard X32 bitfiles directly. This is discussed in
the next section.

In the first subsection, all requirements which must be met prior to installing and syn-
thesizing the X32 are listed. In the second subsection, the steps to install, synthesize and
program the X32 on a FPGA are given, and finally, in the last section, it is described how
the X32 can be programmed in extra effort mode, which is necessary for some configurations.

2.2.1 Requirements

The following applications must be present on a system to compile the X32 source code.

e Compiled X32-Tools (See previous section)
e GNU Make, or similar

e A Perl interpreter

Xilinx Webpack ISE 8.3 (or later) [13]

xc3sprog [8] (optional)
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2.2.2 X32 Source Code Installation
1. Download x32.tgz from the download site [3].

2. Extract the archive to your hard drive (it is recommended to extract the package into
the same directory the tools where extracted, such that the x32 directory from x32.tgz
shares the same parent directory as the x32-tools directory from x32-tools.tgz).

3. If the archive is not extracted to the same folder as the toolset, change the TOOLDIR
variable in the makefile (Makefile.linux for Linux, Makefile.windows for Windows).

4. The X32 can now be compiled using the supplied makefiles. The different configurations
can be compiled by executing
make -f Makefile.linux <configuration_directory>, e.g.
make -f Makefile.linux X32-minimal-interrupts. For Windows replace
make -f Makefile.linux withmingw32-make -f Makefile.windows. See Appendix C
on the available standard configurations.

5. After compilation, the files x32.bit, x32.cl and x32.h are created for the compiled
configuration. x32.bit can be uploaded to any Spartan 3 FPGA using either Impact
(part of the Xilinx Webpack ISE) or xc3sprog [8]. The files x32.h and x32.c1 should
be copied, or linked into the 1ib-x32 directory in the x32-tools to access X32 specific
library functions and configuration specific peripheral devices. Make sure to distribute
these files amongst all computers building software for this X32 configuration.

2.2.3 Compiling the X32 in extra effort mode

Some configurations might be too complicated to be placed and routed on the first try. In
this case, after building the X32 configuration, an error message will appear telling the timing
constraints could not be met. For example, when the X32-example configuration is synthesized
for the first time, it will have paths up to 26ns long. On a 50MHz clock, the X32 is thus
overclocked by more than 25%. To get better routing results, the place and route utility can
be set in “extra effort mode”. In extra effort mode, the utility keeps looking for better results
until one is found which meets the timing constraints. Note that no guarantee is given the
utility will find such a result, and may keep running forever.

To run the place and route utility in extra effort mode, use
make -f Makefile.linux X32-example/X32.dir. Off course,
Makefile.linux should be changed to Makefile.windows on Windows, and X32-example
should be changed to the configuration used.

The place and route utility will now start building designs in the
x32-example/x32.dir directory. The different results will be named H_H_#.ncd, where #
is a unique number. When a valid result is found, this result can be copied, or symlinked
into the x32-example directory with the name x32.ncd. When this is done, the X32 can be
completed by typing make x32.bit.

2.3 X32 Binary Installation

When using one of the standard X32 configurations, it is possible to directly download the
X32 binaries. This avoids installing the Xilinx Webpack, which costs several gigabytes of
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hard disk space, and rebuilding the X32, which might take up to 30 minutes. Off course, this
comes at the cost of not being able to make any changes to the X32 configuration, and a
standard configuration must be chosen.

2.3.1 Requirements

e Xilinx Webpack ISE 8.3 (or later) [13], or xc3sprog [8]

2.3.2 X32 Binary Installation

1. Download x32-binaries.tgz from the download site [3].

2. Extract the archive to your hard drive (it is recommended to extract the package into
the same directory the tools where extracted, such that the x32 directory from x32.tgz
shares the same parent directory as the x32-tools directory from x32-tools.tgz).

3. After extraction, the files x32.bit, x32.cl and x32.h are created for each configuration.
x32.bit can be uploaded to any Spartan 3 FPGA using either Impact (part of the Xilinx
Webpack ISE) or xc3sprog [8]. The files x32.h and x32.c1 should be copied, or linked
into the 1ib-x32 directory in the x32-tools to access X32 specific library functions and
configuration specific peripheral devices. Make sure to distribute these files amongst all
computers building software for this X32 configuration.



Chapter 3

Running software on the X32

A processor alone is useless without any software to execute. This chapter describes how
software (programmed in the C programming language) can be executed by the X32 processor.

The first section briefly gives the support of the X32 for the C programming language.
The second section describes how software can be compiled into a binary format which can
be understood by the X32. In the third section, it is explained how software can be uploaded
to the X32. Finally, in the fourth section, it is described how software can be executed after
uploading.

3.1 X32 C support

The X32 and its tools support the almost the entire ANSI C programming language as
described in [5]. The language syntax is completely supported, and all but the floating point
variable types (float and double) are supported. The long long, long and int variable
types, however, are all 32 bit.

A great amount of functions from the standard library included in the ANSI C specifica-
tions have also been ported to the X32 programming platform. An overview of the available
library functions can be found in Appendix A.

3.2 Compiling software

The first step in executing software is compiling it into a binary format the X32 can under-
stand. From here, it is assumed, the software is available in C source files, and the X32-tools
are installed correctly. To compile C source files, the files must be processed by the com-
piler (rcc), the assembler (x32-asm) and the linker (x32-1ink). Conveniently, the lcc driver
(Lcc-X32) is able to do all that, such that programs can be compiled using only one com-
mand. Suppose there are two source files, called sourcel.c and source2.c, and they must
be compiled into a single executable, called program. ce, the following command can be used:

lcc-X32 sourcel.c source2.c -o program.ce
The lcc driver can also be used to compile a program in steps:

# compile
1cc—-X32 -S sourcel.c -o sourcel.bc
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lcc-X32 -S source2.c -o source2.bc

# assemble

lcc-X32 -c sourcel.bc -o sourcel.co

lcc-X32 -c source2.bc -o source2.co

# link

lcc-X32 sourcel.co source2.co —-o program.ce

To make sure that the compiler always identifies your files correctly, always make sure the
source files have the .c extension, the bytecode (compiled) files the .bc extension, the object
(binary bytecode) files the .co extension, the executables the .ce extension, and any libraries
the .cl extension.

3.2.1 Compiling and using custom libraries

To manage larger programs, it is sometimes easier to compile often used pieces of source code
into a library. All functions compiled into a library are available to any source file. To compile
source2.c and source3.c into a library called library.cl, use the following command:

lcc-X32 source2.c sourced.c -Wl-buildlib -o library.cl

To use the new library, the compiler know where to find the library. The library can either
be placed in one of the specified library directories (see Section 2.1), or it can be specified
during the compilation of the program:

lcc-X32 sourcel.c -Wl-1lib -Wllibrary.cl \
-0 program.ce

In addition to library a library file, the -1ib parameter also supports directories. Assuming
several library (.cl) files are placed in a directory called 1ibraries, the following command
would load all libraries from libraries.

lcc-X32 sourcel.c -Wl-1lib -Wllibraries \
-0 program.ce

The available library functions included with X32 tools can be found in Appendix A.

It is important to understand that the source files compiled into a library are included
completely, or completely not in an executable file. For example, assume the files sourcel.c,
source?2.c and source3.c from the previous example have the following layout:

sourcel.c
function main()
source2.c
function add()
function sub()
source3d.c
function mul()
function div()

If main in sourcel.C uses the functions add and mul, the linker will automatically include all
code from source2.c and source3.c, thus the functions sub and div are included as well.



CHAPTER 3. RUNNING SOFTWARE ON THE X32 11

However, if main, only uses function add, the function sub is included, but the functions mul
and div are not. Also, when function mul from source3 uses function add from source2,
and only function div is called by main, all functions are included in the final executable,
since by including function div, mul is included, which requires add, and by including add,
sub is included as well. It is therefore recommended to spread the library functions over as
much source files as possible, giving the linker total control over which functions to include in
the final executable. This will only slightly increase the overhead of library files, but might
greatly reduce the size of the final executable file.

3.3 Uploading software

To execute binary executables on the X32, they must first always be loaded into the RAM of
the X32. There are two possible ways to get software loaded into the X32 RAM; by including
the executable in the processors ROM, or by loading the executable directly into the RAM by
using a loader program. Both have their advantages and disadvantages which are explained
in the next two sections.

3.3.1 Uploading to ROM

When the X32 boots up, it automatically copies the entire contents from its ROM to its RAM
and starts executing from the RAM. To include software in the ROM of the X32, the binary
executable must be synthesized with the X32 design (which contains the ROM entity). The
major disadvantage of this scenario is that each time the software is changed, the entire X32
must be resynthesized, which may take up to 30 minutes. The advantage however is that
X32 will always start executing the software placed in the ROM after a reset automatically,
and the software remains on the X32 when the power is taken off. This is therefore the
recommended scenario for final releases of a product.

To store programs in the ROM of the X32, the executable file must first be converted
into a VHDL ROM description, and then be added to the list of X32 VHDL source files. To
convert a binary file to a VHDL ROM description, a small program bin2vhd is included in
the X32-tools. To convert the program program.ce into the ROM description rom.vhd, use
the following command:

bin2vhd program.ce -o rom.vhd

The Makefile of the X32 must then be modified to include the custom rom.vhd. The easiest
way to do this is by overriding the standard rom.vhd creation rule by adding a rule like:

X32-minimal/rom.vhd: program.ce
bin2vhd program.ce -o X32-minimal/rom.vhd

When this rule is added, the X32-minimal configuration will include program.ce in its ROM.
Before synthesizing, make sure the ROM software is compiled correctly.

All standard configurations of the X32, have the ROM copied to an address other than
zero (but 0xC0000). The reason for this is that the bootloader, which allows custom programs
to be uploaded directly into the X32 RAM, does not occupy any RAM in the range of 0-768K.
When custom software is compiled into the X32 ROM, either the software must be compiled
to run from 0xC0000 by adding -base=C0000 to the compiler command line, or the X32 must
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be configured to copy the ROM to RAM address zero. See Section 5.3.2 for more info about
configuring the X32.

3.3.2 Uploading to RAM

As described in the previous section, running software from the X32 ROM requires a resyn-
thesis of the X32, which takes a lot of time. When software is being developed, it must often
be tested, and having to wait half an hour for each test is often a waste of time. Therefore,
a bootloader program has been developed which is placed in the ROM of the X32 for all
standard configurations. The bootloader contains a simple shell which runs on stdin and
stdout, which are by default connected to the primary RS232 connection [12]. Using a ter-
minal program, it is possible to communicate to the bootloader, and access the X32 memory
directly. To upload programs, a small upload utility is created which communicates with the
bootloader. To upload a program executable to the X32, use the following command:

X32-upload program.ce -c /dev/ttySO

Assuming /dev/ttyS0 is the tty the X32 is connected to. On windows, com# can be used,
when replacing # with the serial port number the X32 is connected to.

3.4 Running software

Software installed in the ROM of the X32 is automatically started. However, when uploading
software to the RAM of the X32, the program must be started manually!, as the X32 has
started executing the resident bootloader. To do this connect to the bootloader using a
terminal program (e.g. minicom for Linux, or HyperTerminal for Windows). If the menu
doesn’t show immediately, type m [enter] to show the menu with the accepted commands.
If no menu appears, there is a problem with the connection. The command to start programs
is the s command.

There are two ways to start a program, using simply s causes the bootloader to make a
function call to main(), and when using the s j command, the bootloader jumps to the first
byte of the executable. The difference between these starting methods are explained in the
next two sections. The memory layout for both types is shown in the third section.

3.4.1 Calling a program

Calling a program is the preferred way to quickly test small programs. The program is simply
executed as a function call (to main()) from the bootloader program. When the program exits,
the X32 will automatically return to the bootloader and show some timing statistics. The
stack of the program runs on top the stack of the bootloader. Also the bootloader must remain
intact to be able to return to the bootloader. See Section 3.4.3 on the memory requirements
to use the call method.

When returning from a program to the bootloader, and restarting the program without
re-uploading, care should be taken with assigned global variables, as they are not reset, as
shown in the following example:

Tt is possible to start the software automatically by supplying the -s command line parameter to the upload
tool
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int n = 0;
int main() {
n++:

I

return n;

¥

On any system, this program will always return 1. However, when running the program on
the x32 for a second time, without re-uploading the program, it will return 2. This problem
can be avoided by dynamically assigning all global variables:

int n;

int main() {
n = 0;
n++;

return n;

3.4.2 Jumping into a program

Jumping into a program gives complete control to this program. To program generates its
own stack, and the full memory range is available to the program, however, it is not possible
to return to the loader. This method should in general only be used when the full memory
range is required, or to test the behavior of the X32 when the software is stored in the ROM.

3.4.3 Memory layout

When testing programs using the bootloader, it is important to know that two programs are
located in the RAM of the X32, and it is therefore required to understand the memory layout
of the X32 running the bootloader, to make sure the bootloader and the program do not
stand in each others way.

The bootloader is by default placed at address 0xC0000 (or 768KB) and requires about
30KB of memory. No program uploaded using the bootloader may thus ever exceed address
0xC0000, and thus must not be larger than 768KB. The stack of a program is placed directly
beyond the memory required by the code and variables of a program, and grows upward in
memory. In case of the bootloader, the stack of the bootloader thus starts at about 0xC8000
(or 800KB), allowing 200KB of stack when 1MB of RAM is available. The stack space
available to a program executed using the call method is thus slightly less than 200KB. When
executing a program using the jump method, the bootloader may be overwritten by dynamic
allocated data and the stack, allowing the use of the full RAM. This is indicated in Figure 3.1.

In short, for programs being able to be executed by the bootloader, they must follow the
following rules:

To use the call method:

e The size of the executable plus the size of the uninitialized variables must not exceed

768KB
e The size of the stack must not exceed 200KB

To use the jump method:
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Figure 3.1: Memory layout when running the loader
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On the left, the memory is shown when executing programs using the call method, on the right,

the memory is shown when executing programs using the jump method.
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e The size of the executable must not exceed 768KB

e The size of the executable plus the size of the uninitialized variables plus the size of the
stack must not exceed 1024KB

To get an indication of the memory a program uses, the bytecode interpreter can be used.
See Section 3.6 for how to use the interpreter.

3.5 Running multiple programs on the X32

It is possible to upload a program to any location in the memory, and thus store multiple
programs into the memory of the X32, and have them interact. To upload a program to
a location other than zero, use the -1 command on the uploader. For example; to upload
program.ce to location 0xA000, use the following command:

X32-upload program.ce -c /dev/ttySO -1 A00O

The program can be started using using either s A000 or s A0O0O j on the bootloader com-
mand prompt.

To execute programs from a different location however, the linker must know the location
in advance, by supplying the -base parameter when compiling. To compile sourcel.c and
source?2.c into a program. ce which can be executed from address 0xA000, use the following
command:

lcc-X32 sourcel.c source2.c -o program.ce -Wo-base=A000

Note that the program can now only be executed from 0xA000, and no longer from address
zero. When using multiple programs at the same time, it is even more important to understand
the memory layout of the X32, which can be found in the previous section.

3.6 Running programs on the bytecode interpreter

In addition to the hardware X32, a software interpreter has been written in C, which can
execute X32 executables. The X32 interpreter is a part of the X32-tools and gets automatically
compiled when compiling the X32 tools. The X32 interpreter should be used whenever the
X32 hardware is not available, or to get a better insight of the memory usage of a program.

To interpret the program program. ce, type the following on the command line (assuming
the bin directory of the X32 tools are added to the PATH environment variable):

x32-sim program.ce

The program will now be executed. When it finishes, some information about the memory
usage is given. To load a program at a different address than zero (e.g. to test the loader),
the -base parameter can be used. The following command interprets the loader from address
0xC0000:

x32-sim program.ce -base C0000

The interpreter can also be used to analyze C programs using the -a parameter:
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x32-sim program.ce -a program.txt

Creates the program.txt file containing some information about the executed instructions,

and memory actions taken by the interpreter.
The complete list of peripheral devices supported by the bytecode interpreter can be found

in Section C.9.



Chapter 4

X32 specific code

This chapter describes how to write X32 specific code, how to access X32 peripherals, inter-
rupts and some advanced coding examples for the X32.

In the first two sections, Section 4.1 and Section 4.2, it is described how peripheral devices
attached to the X32 can be accessed from C code, and how the interrupt controller can be
used. In the following sections, some more advanced features of the interrupt system are
described. Sections 4.3, 4.4 and 4.5 respectively describe software interrupts, resource locking
and context switching on the X32. The last section, Section 4.6 describes how the current
time can be retrieved from the X32.

4.1 Accessing peripheral devices

Peripheral devices, in short peripherals, are all connected to the memory bus of the X32.
Writing data to, and reading data from a peripheral, can thus be done by simple memory
reads and writes. In C, a peripheral can thus be seen as a simple variable at a specific location.
The memory layout of the X32 is shown in Figure 4.1

By default, the address at which the peripherals are located is 0x80000000, and the
peripheral bus is 32 bit wide. The first peripheral is therefore located at 0x80000000, the
second, 32 bit (or 4 bytes) higher, at 0x80000004, the third at 0x80000008, and so on. All
peripherals can be accessed as integers, although some devices might not use the full integer
range. If the data is signed or not depends on the peripheral device.

For easy peripheral access, an integer array called peripherals is declared in x32.h?,
and is located at 0x80000000. The first peripheral is therefore located at peripherals|0], the
second at peripherals[1], and so on. Writing to and reading from a peripheral device in C is
thus nothing other than writing to and reading from the peripheral array.

The available peripheral devices are dependent of the X32 configuration used. Each con-
figuration has its own version of x32.h, which contains macros starting with PERIPHERAL _
which hold the peripheral locations. For example, x32.h might contain PERIPHERAL_BUTTONS.
If so, the state of the buttons can be read from peripheral [PERIPHERAL_BUTTONS]. In Ap-
pendix C the peripherals for the standard configurations are listed. In the following three
subsections, three special registers are handled which can be connected to the peripheral bus.

'The peripherals array is declared as an extern variable in x32.h, the variable itself is located in x32.c in
the library directory of the x32 sourcecode.

17
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Figure 4.1: X32 Memory bus layout
The X32 connected to the main memory, the interrupt controller and three peripheral devices.

These registers are not considered devices since they are unique; only one of each may be
connected to the peripheral bus.

4.1.1 Peripheral bus id register

The peripheral bus id register can be found on peripherals[PERIPHERAL_UID]. The 32-bit
register is read-only and contains a number which is unique for each X32 configuration. It
can be used to identify X32 configurations. The ids used by various configurations can be
found in Appendix C.

4.1.2 Instruction counter register

The instruction counter register can be found on

peripherals [PERIPHERAL_INSTRCNTR]. It is a 32-bit read-only register containing the amount
of instructions executed since the last X32 reset. Note that the register overflow approximately
once per half hour.

4.1.3 Processor state register

The processor state register is a special register on which each bit is set on a special processor
event. The register is reset when it is read by software. The register can be found at
peripherals [PERIPHERAL_PROCSTATE]. The explanation of each bit in the register can be
found in Table 4.1.
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Table 4.1: Processor state register

| Bit | Meaning

0 | Booting, this bit is set while booting (resetting) the X32. It
is thus only high the first time the processor state register
is read

1 Simulating, this bit is always high on the bytecode inter-
preter, and always low on the X32.

2 Not connected

3 Division by zero, this bit is set when division by zero occurs.
It can be used to detect division by zero on cores without
interrupt support

4 Overflow, this bit is set when overflow occurs. It can be used
to detect overflow on cores without interrupt support
5 Not connected

6 Out of memory, this bit is set when the X32 runs out of
memory, this bit can currently not be used

7 Trapped, this bit is set when the X32 executes a trap in-
struction

4.2 Using interrupts

The X32 can be configured to support a basic interrupt system. An interrupt system allows
hardware to notify the software it has some information to share. Without it, the software
must continuously keep asking the hardware for it, which is known as polling. Although
most software can be written using the polling technique, using interrupts often improves the
performance and simplicity of a system, and is necessary for, e.g., real-time operating system
support.

The interrupt system of the X32 makes use of interrupt request lines (interrupt request,
or IRQ lines) which can be asserted by peripheral devices. When this happens, the interrupt
controller interrupts the processor, and forces it to jump to a predefined address. This address,
should be the address of an interrupt service routine, also known as ISR. When the interrupt
service routine finishes, the processor returns to normal execution.

The interrupt controller also has support for interrupt priorities, which allows prioritizing
device interrupts. A timer controlling a time-sensitive control algorithm may for example
require a higher priority than a button controlling a user interface. Finally, each interrupt
can be individually enabled and disabled, and a master interrupt is available which allows
completely disabling all interrupts.

4.2.1 Programming the interrupt controller

The interrupt controller is equipped with a few bytes of RAM which allows programming
the interrupt controller. The RAM is connected to the X32 through the standard memory
bus, just like the peripherals are, and can therefore be accessed using memory pointers, or
even the peripheral array. By writing the interrupt controller memory, for each interrupt,
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an interrupt vector (pointer to ISR) and an interrupt priority can be defined. The ISR is
a function which is called when the corresponding interrupt occurs. The function may not
take any parameters, and it must return void. In addition, a register is available which holds
the enable flags for each individual interrupt, and a global interrupt. To enable an interrupt,
both the bit for the individual interrupt, and the bit for the global interrupt must be set.

The locations of the interrupt controller RAM, and the interrupt enable register are de-
fined in x32.h, as indices of the peripheral array. The RAM starts at
peripherals [PERIPHERAL_INT_VECT_BASE], with the vector for the first interrupt. The next
item, peripherals[PERIPHERAL_INT_VECT_BASE+1], contains the priority for the first inter-
rupt. The third and fourth items, peripherals [PERIPHERAL_INT_VECT_BASE+2] and
peripherals [PERIPHERAL_INT_VECT_BASE+3], contain the vector and priority for the second
interrupt, and so forth. The interrupt enable register is located at
peripherals [PERIPHERAL_INT_ENABLE]. Bit 0 of this value holds the enable flag for the first
interrupt, and bit n-1 the enable flag for interrupt n. The global interrupt flag is located at
bit n, where n is the amount of interrupts supported by the interrupt controller.

To make programming the interrupt controller a little easier, several macros are defined in
x32.h. Each device which uses one or more IRQs, generates a macro prefixed with INTERRUPT
defining its IRQ index. For example, a peripheral connecting buttons to the X32, may define
the INTERRUPT_BUTTON interrupt. The available interrupts can be found in Appendix C for
premade configurations. More information on the enabling and disable mechanism used by
the X32 can be found in Section 4.2.3. In addition, the macro INTERRUPT_GLOBAL is defined
and holds the bit index of the global enable flag for the interrupt enable register.

The following macros are available to program the interrupt controller: INTERRUPT_VECTOR,
INTERRUPT_PRIORITY, ENABLE_INTERRUPT and DISABLE_INTERRUPT. All four macros take one
parameter: the IRQ index of the interrupt. The ENABLE_INTERRUPT and DISABLE_INTERRUPT
enable and disable individual interrupts respectively. Using the INTERRUPT_VECTOR macro,
an ISR can be specified. Using the INTERRUPT_PRIORITY macro, a priority can be given
to an interrupt. More information about priorities can be found in Section 4.2.2. The
INTERRUPT_VECTOR and INTERRUPT_PRIORITY may not take INTERRUPT_GLOBAL as an argu-
ment. It is important to always define the ISR and priority before enabling the interrupt.

It is recommended to always program the interrupt controller using the supplied macros
for three reasons. At first, some of the addresses and locations may be different on differ-
ent configurations of the X32. A recompilation of the code will in this case be enough to
automatically change all addresses and indices, and even detect if the used interrupts are
supported. The second reason is that changing a single bit in the interrupt enable register,
requires accessing the register twice; once to read, and once to write the register. An inter-
rupt occurring between these two actions might cause problems. The INTERRUPT_ENABLE and
INTERRUPT_DISABLE macros, temporarily disable all interrupts, making the action atomic
The third reason, is off-course, that it makes the code a lot more readable and maintainable.

The following example runs initializes the button interrupt, prints dots until a button is
pressed (or released) and then exits.

#include <x32.h>
#include <stdio.h>

int quit = 0;
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void button_isr() {
quit = 1;

int main() {
/* set button interrupt address & priority */
INTERRUPT_VECTOR (INTERRUPT_BUTTONS) = &button_isr;
INTERRUPT_PRIORITY (INTERRUPT_BUTTONS) = 10;

/* enable interrupt */
ENABLE_INTERRUPT (INTERRUPT_BUTTONS) ;
ENABLE_INTERRUPT (INTERRUPT_GLOBAL) ;

/* run until quit becomes nonzero */
while(!quit) putchar(’.’);

/* disable interrupts */
DISABLE_INTERRUPT (INTERRUPT_GLOBAL) ;
DISABLE_INTERRUPT (INTERRUPT_BUTTON_STATE_CHANGED) ;

return O;

4.2.2 Interrupt priorities

As explained above, interrupt priorities can be used to give one interrupt priority over another.
An interrupt with a higher priority may interrupt an ISR called with a lower priority, but an
interrupt will never interrupt an ISR called with a higher or equal priority.

The interrupt controller does not sort pending interrupts on priority. When two interrupts
with different priorities are pending, either one of them is serviced first. However, the lower
priority interrupt will be interrupted immediately by the higher priority interrupt.

The interrupt priority system depends on a special processor register called the execution
level register. The execution level is saved on the stack on each function call, and restored
on each function return. When an interrupt causes a call to an ISR, the execution level is
(after being saved) overwritten by the priority of the interrupt. The interrupt controller uses
the value of the execution level to determinate whether it should generate an interrupt; the
execution level must always be lower than the priority of the pending interrupt, to have the
controller service the interrupt.

When the processor resets, the execution level is reset to zero. Normal code does not
change the execution level, and thus runs at an execution level of zero. Each interrupt must
thus have a priority greater than zero to have it serviced.

The total amount of priority levels is in theory only bounded by the size of the execution
level, which is 32-bit (and allows values up to 4.2 billion). In practice, it is recommended to
only use the range from 1 to 999 (which is more than any system will ever need). Since the
execution level can also be set manually (see Section 4.2.4), execution level 1000 can be used
to temporarily disable all interrupts. Execution level 0xF000, 0xF001 and 0xF002 are used
by the bootloader application to catch division by zero (which is discussed in Section 4.2.5),
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ie_global and
priority > execution_level

servicing /
interrupt

Figure 4.2: Finite state machine for a single non-critical interrupt
Each interrupt starts in standby. Whenever a device asserts the irq signal associated with that
interrupt, the interrupt gets scheduled. Disabling an interrupt will force it back in the standby
state. When an interrupt is scheduled, it is serviced as soon as the current processor priority
drops below the priority of the interrupt, and the global interrupt is enabled.

the TRAP instruction (which is discussed in Section 4.3.2 and the out of memory interrupt
(discussed in Section 4.2.6). It is therefore recommended to always keep the execution level
below these values.

4.2.3 Enabling and disabling interrupts

Before entering an ISR, the interrupt must first be scheduled and serviced. Servicing an
interrupt means forcing the processor to make a function call to the ISR. Before servicing
an interrupt, the interrupt must be scheduled for service. These two steps are automatically
taken by the interrupt controller, if the interrupt meets the predefined criteria: An interrupt
gets scheduled if:

e The TRQ line is asserted.
e The individual interrupt is enabled.
An interrupt gets serviced if:
e The interrupt is scheduled.
e The individual interrupt is enabled.
e The global interrupt is enabled, or the interrupt is critical.
e The interrupt priority is higher than the current execution level.

This is also depicted in Figure 4.2 It can thus be seen that when individual interrupts are
disabled, they will not be scheduled. This prevents interrupts to schedule long before the
program starts to accept them, causing to trigger immediately after the interrupt is enabled.
Interrupts may however still be scheduled when they don’t have a high enough priority, or the
global interrupt is disabled. They will then be serviced immediately whenever the execution
level is lowered, and the global interrupt is enabled. The state machine on which the interrupt
controller decides whether an interrupt gets serviced is shown in Figure 4.2.
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As can be seen, some interrupts are critical, and will not be stopped by a disabled global
interrupt. Which interrupts are critical depends on the configuration, and can be found in
Appendix C. In general, all processor exceptions, such as division by zero, overflow, the trap
instructions and the out of memory interrupt are marked as critical interrupts.

4.2.4 Programming the execution level

The X32 library contains three functions to control the execution level manually. This en-
ables the programmer to raise the priority of code running on the processor, and disabling
several low priority interrupts at once, without having to touch the interrupt enable flags,
which are often controlled by other parts of a program/operating system. The functions
are defined in x32.h and are called get_execution_level(), set_execution_level() and
restore_execution_level(). They return the current execution level, set the execution
level to any value, and reset the execution level to the level active when entering this func-
tion, respectively. The following example shows how to get, set and restore the execution
level.

#include <x32.h>
#include <stdio.h>

/* the execution level is preserved on function calls */
void print_execution_level() {
printf ("The execution level is now: %d\r\n",
get_execution_level());

int main() {
print_execution_level();

/* raise the current code priority to 10, and
consequently, disable all interrupts with a
priority of 10 and lower */

set_execution_level(10);

print_execution_level();

/* restore to original level */
restore_execution_level();
print_execution_level();

return O;

}

Note that the restoration of the execution level at the end of the main function in the
previous example is not required. The execution level is always automatically restored on a
function return, which is required to reset the execution level when returning from an ISR.
It is therefore also not (easily) possible to set the execution level of caller functions.

When writing an real-time operation system for the X32, raising the execution level is the
preferred way to implement critical OS sections.
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4.2.5 Arithmetic error interrupts

The processor core itself is able to generate two interrupts: one when overflow occurs, and one
when division by zero occurs. The IRQs for these interrupts are defined as INTERRUPT_OVERFLOW
and INTERRUPT_DIVISION_BY_ZERO.

The division by zero is by default catched by the loader, after which an error message is
printed and the program is terminated. Off-course, it is also possible to use a different ISR
to catch division by zero interrupts, or even to disable the interrupt. The overflow interrupt
is by default disabled, and must be catched by the program itself. It is recommended to only
enable the overflow only at the code which should be checked for overflow, and to immediately
disable it in the overflow ISR. This is because sometimes, including in several library functions,
overflow is intended, and does not cause any problems with the program results.

The following example shows the use of the division and overflow interrupts:

#include <x32.h>
#include <stdio.h>
#include <stdlib.h>

int overflow;

void divO_isr() {
printf ("ERROR: Division by zero occurred!\r\n");
exit (EXIT_FAILURE) ;

void overflow_isr() {
DISABLE_INTERRUPT (INTERRUPT_OVERFLOW) ;
overflow = 1;

int main() {
int i, j;
INTERRUPT_VECTOR (INTERRUPT_OVERFLOW) = &overflow_isr;
INTERRUPT_PRIORITY (INTERRUPT_OVERFLOW) = 10;
INTERRUPT_VECTOR (INTERRUPT_DIVISION_BY_ZERO) = &divO_isr;
INTERRUPT_PRIORITY (INTERRUPT_DIVISION_BY_ZERQO) = 10;
ENABLE_INTERRUPT (INTERRUPT_DIVISION_BY_ZERO) ;

overflow = i = 0;

=1

while(loverflow) {
ENABLE_INTERRUPT (INTERRUPT_OVERFLOW) ;
j =73 * 10;
DISABLE_INTERRUPT (INTERRUPT_OVERFLOW) ;
i++;
printf("10°%d = %d\r\n", i, j);

}

printf ("Overflow at 107%d\r\n", i);
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while(1) {
printf("Yd / %d = ", 10, i);
j = 10/i;
printf ("%d\r\n", j);
i--;
}
return O;

4.2.6 Out of memory interrupt

The x32 has support for a forbidden memory space. Any read or write actions to this memory
space cause the processor to raise the out of memory interrupt. This interrupt can be used
to prevent the processor from crashing whenever a program consumes too much memory.
The index of the out of memory interrupt is defined in INTERRUPT_OUT_OF _MEMORY, and is by
default catched by the loader.

The blocked memory range on the standard X32 configurations lie between 0x000FF000
and Ox7FFFFFFF. The lower bound of the blocked memory range is located slightly below
the upper memory bound of the Spartan 3 Starter Board [12] (0x00100000). This is done such
that the interrupt triggers some time before the processor completely runs out of memory,
leaving the address range from 0x000FF000 to 0x00100000 (4KB) for stack space required
by the out of memory ISR. The upper bound of the blocked memory range is located just
below the first peripheral device. Reading from and writing to the range from 0x80000000 to
OxFFFFFFFF will thus never cause an out of memory interrupt. The following code shows
how to protect a program from running out of memory:

#include <x32.h>

void run_out_of_memory() {
/* recursively call the current function, which stack will
eventually run into the forbidden memory space */
run_out_of_memory();

void out_of_memory_isr() {
printf ("Out of memory, exiting!\r\n");
/* disable the out-of-memory interrupt, since this ISR may
use the forbidden memory space */
DISABLE_INTERRUPT (INTERRUPT_OUT_OF_MEMORY) ;
exit (1) ;

int main() {
INTERRUPT_VECTOR (INTERRUPT_OUT_OF_MEMORY)

= &out_of_memory_isr;
INTERRUPT_PRIORITY (INTERRUPT_OUT_OF_MEMORY) =

1000;
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ENABLE_INTERRUPT (INTERRUPT_OUT_OF _MEMORY) ;

printf ("Running out of memory...\r\n");
run_out_of_memory () ;
return O;

}

Without using the out of memory interrupt, the example shown above will crash the processor.
Note that the out of memory interrupt is disabled in its ISR. This is required, since the stack of
out_of_memory_isr runs in the forbidden memory space. When the interrupt is not disabled,
it will trigger again immediately after returning from the ISR.

4.3 Software Interrupts

Software interrupts are interrupts generated by program code. They are useful for commu-
nication between programs which do not know each others exact position in memory. The
X32 does not directly support software interrupts, but a simple peripheral device is available,
which causes an interrupt when any data is written to it. By writing to this device, a software
interrupt can thus be simulated. A server program can set the ISR for the software interrupt,
after which a client program can do service requests on the master program by raising this
interrupt. This method is often used in modern operating systems.

4.3.1 Passing data trough software interrupts

When using software interrupt, it is often required to pass data between the interrupt raising
function and the interrupt service routine. This can be accomplished by combining the
stackframes for these two functions, which allows sharing parameters given to a function, and
sharing a return value and address. To combine two stackframes, the combine_stackframe
function is defined in x32.h. The following example shows how to use this function, and how
parameters can be passed through a software interrupt:

#include <x32.h>

int main() {

int a = 1;

int b = 2;

/* set software ISR to softint_isr, and enable the
interrupt (the ISR should normally be a
void(void) function, this is however not
required by the compiler) */

INTERRUPT_VECTOR (INTERRUPT_SOFTINT) = &softint_isr;

/* the priority must be >1000, see below for details */

INTERRUPT_PRIORITY (INTERRUPT_SOFTINT) = 1001;

ENABLE_INTERRUPT (INTERRUPT_SOFTINT)

/* call raise_interrupt, which will compute the sum of
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a and b */
printf ("%d + %d = %d\r\n", a, b, raise_interrupt(a, b));

int raise_interrupt(int a, int b) {

/* raise the execution level to 1000, make sure all
hardware interrupt priorities are below 1000,
and the software interrupt priority is above
1000 */

set_execution_level (1000);

/* raise the software interrupt by writing to the
software interrupt device (the value to write
doesn’t matter) */

peripherals [PERIPHERAL_INT_SOFTINT] = 1;

/* this code will never be executed! */
return -1;

/* interrupt service routine: this function MUST have the
EXACT same prototype as the function calling this
interrupt */

int softint_isr(int a, int b) {

/* this function is called by the interrupt controller.
on execution, the processor expects the function
to be a void(void) function, returning, or using
any of the parameters now will result in "random"
behavior */

/* call combine_stack frame to merge the stack frames of
softint_isr and raise_interrupt: */

combine_stackframe() ;

/* reset the execution level to level 10, alternatively,
the restore_execution_level() function can be used
to restore the execution level to the value active
when calling raise_interrupt */

set_execution_level(10);

/* the a and b parameter are now available, and a return
from this function will result in a return from
raise_interrupt, return the sum of a and b: */

return a + b;

¥

The code above uses two tricks to accomplish passing data through software interrupts. The
first one is declaring the ISR as an int (int, int) function, instead of a standard void (void)
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function. This is only allowed when using the combine_stackframe function, and the function
prototype must be the same as the calling function. The second trick is using the execution
level to temporarily disable all interrupts. This is required to make sure no hardware interrupt
triggers between the interrupt raising function and interrupt service routine of the software
interrupt. If this would happen, the softint_isr would combine with the hardware ISR,
and since this is a void(void) function, the stack will get corrupted.

4.3.2 The trap instruction

The trap instruction is a special case of software interrupt. It is not triggered by a write
action to the peripheral bus, but by a special instruction called the trap instruction. This
trap instruction can be used by debugging software to set breakpoints within programs. The
trap instruction has a binary opcode in which only the most significant bit matters: it must
be one. All other instructions have this bit set to zero, therefore, when a debug program
sets a breakpoint, only the most significant bit of the instruction has to be set, and the
original instruction can easily be restored by unsetting the most significant bit, eliminating
the requirement of a data structure holding all original instructions.

The following code sets a TRAP instruction at the function breakpoint. The INSTRUCTION
variable type is defined in x32.h, as a 16 bit unsigned integer.

#include <x32.h>
#include <stdio.h>

void breakpoint() {
printf ("In breakpoint()\r\n");
}

void trap_isr() {
/* pointer to an instruction */
INSTRUCTION *code;

printf("In trap(O\r\n");

/* ’fix’ the instruction, so normal code execution can
continue */

/* set code to point to the first instruction in the
breakpoint() function */

code = (INSTRUCTION*)&breakpoint;

/* reset msb of the instruction */

*address &= "0x8000;

/* return to breakpoint */

int main() {
/* pointer to an instruction */
INSTRUCTION *code;
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/* have the trap function listen for the trap interrupt */
INTERRUPT_VECTOR (INTERRUPT_TRAP) = &trap_isr;
INTERRUPT_PRIORITY (INTERRUPT_TRAP) = 10;

ENABLE_INTERRUPT (INTERRUPT_TRAP) ;

/* set code to point to the first instruction in the
breakpoint() function */

code = (INSTRUCTION*)&breakpoint;

/* set msb of the instruction */

xcode |= 0x8000;

/* call breakpoint() */
breakpoint () ;

DISABLE_INTERRUPT (INTERRUPT_TRAP) ;
return O;

¥

When building a debugger, it is important to realize that the trap instruction suffers from the
same interrupt controller latency as normal software interrupts, however a different solution
must be used, since it is easy to replace one instruction in the program to be debugged, but
very hard to replace several. The solution does thus not lie in preventing the problem from
occurring, but handling the problem after it occurred.

This means scanning previous stack frames until the stack frame of the function which
contains the trap instruction is found, which can be done by checking the instruction at the
return address of each stack frame, this must be the trap instruction. If it is not, go up one
stack frame and check its return instruction, repeat until the correct stack frame is found.

4.4 Locking resources

When building a concurrent system, resource locking is sometimes required. The X32 library
has two functions which allows resource locking: lock and unlock. In addition, the variable
type LOCK is defined in x32.h which specifies whether a device is locked or not. The lock
function tries to lock a LOCK variable. It returns non-zero when it succeeds, or zero when the
lock is already locked. The function unlock unlocks a lock, after which it can be locked again.
Both functions are atomic. A LOCK variable must always be initialized prior to using it, which
can be done by simply unlocking the lock. The following code demonstrates the use of the
lock and unlock functions. It is assumed task_a and task_b are running concurrently, and
they both try to increase a counter variable:

#tinclude <x32.h>

int counter;
LOCK counterlock;

void task_a(void) {



CHAPTER 4. X32 SPECIFIC CODE 30

while(1) {

if (lock(counterlock)) {
/* Task A now has exclusive access to counter */
counter = counter + 1;
unlock(counterlock) ;

} else {
/* Task B has exclusive access, can’t access

counter */

void task_b(void) {
while(1) {

if (lock(counterlock)) {
/* Task A now has exclusive access to counter */
counter = counter + 1;
unlock(counterlock);

} else {
/* Task B has exclusive access, can’t access

counter */

int main() {
counter = 0;

/* initialize the lock */
unlock(counterlock) ;

/* start tasks A & B */

return O;

4.5 Context switching

Context switching is one of the most important building blocks of any a concurrent (multi-
threading) system. This paragraph explains how task switching can be accomplished by the
X32.

The X32 library contains two functions which makes task switching very easy: init_stack
and context_switch. The first function initializes a stack for a new task, and returns a task
pointer. The second function switches between two task pointers. The following example
shows the switching between two tasks.
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#include <x32.h>
#include <stdio.h>

/* create a 4KB stack for a second task */
void* stack[1024];

/* context pointer for task running main() */
void** taskO_context;

/* context pointer for task running task1() */
void** taskl_context;

/* task function, must be of type void(void*), the argument
is filled with the third parameter of init_stack, in
this case; 0. */

void taskl(void* argument) {
int i = 0;
while(i < 10) {

putchar(i + ’0°);
i++;

}

/* switch to taskO_context, save current task in
taskl_context */

context_switch(taskO_context, &taskl_context);

int main() {
/* create a new task, using stack, and executing
function taskl */
taskl_context = init_stack(stack, taskl, (void*)0);

/* switch to taskl, store current task in taskO_pointer,
note that taskO_context is assigned with the current
task context. */

task_context (taskl_context, &taskO_context);

/* any code here only gets executed when taskl switches
back to taskO */
return O;

¥

In the previous example, the main task (taskO) creates a new task (taskl) and switches
to the new task. After 10 seconds, the new task returns to the main task, which exits the
program. A simple operation system would call the context_switch function from a task
scheduling routine, which might be called by a timer interrupt to generate periodic context
switches (known as time slicing).

The previous code could also be created using the setjmp and longjmp library functions,
however, this would require a little more work.
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4.6 Time on the X32

Being a microcontroller which can be powered down at any moment, there is no way for the
X32 to keep track of time. It is therefore impossible to know the time and/or date within an
X32 program. Most X32 configurations are, however, equipped with clocks which count fixed
time periods elapsed since the last reset. The values from these clocks can be used to get the
amount of time elapsed between to points.

The X32 configuration files automatically supply two macros to x32.h which return some
information about time: X32_MS_CLOCK and X32_US_CLOCK. These macros return the amount
of time elapsed since a specific point in milliseconds and microseconds respectively. Both
macros however, are not guaranteed to have a millisecond and microsecond accuracy. An
X32 configuration which, for example, is only equipped with a millisecond clock, will simply
return this value, times 1000, to X32_US_CLOCK. Both values are also 32 bit values, and will
overflow in time. The maximum amount of time which can be measured with the clocks is
therefore approximately 49 days (232/1000/60/60/24), and 71 minutes (232/1000/1000/60)
for the X32_MS_CLOCK and X32_US_CLOCK respectively.

These macros are also used in the sleep and usleep functions declared in x32.h. These
functions both take one parameter containing the amount of milliseconds and microseconds
respectively. The functions run a while loop, until the specified amount of time has elapsed,
and then return. Note that the same overflow restrictions apply to these functions. The
following program prints the amount of seconds elapsed since the program started:

#include <x32.h>
#include <stdio.h>

int main() {
int seconds = O;

while(1) {
printf ("%d seconds elapsed\r\n", seconds++);
sleep(1000);

}
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Configurability

This chapter describes the configurability system of the X32. Using the configurability system,
it is possible to create different setups of the X32 specific for different situations, such as an
X32 setup with multiple DPC/PDC components to control a robot, or an X32 setup with
multiple high precision timers for real-time applications. Several standard configurations
exists, and are listed in Appendix C. When neither of these configurations are sufficient for
a particular task, a new configuration can be created as explained in this chapter.

In Section 5.1, it is explained how a new configuration can be started. The second section,
Section 5.2 describes how the X32 peripheral set can be configured by modifying the VHDL
sourcecode of the X32. Section 5.3 contains a guide for configuring a new X32 configuration
through C-style header files, without needing to write or change any VHDL code. In the final
section of this chapter it is described how new peripherals can be added to the automatic
configuration system of the X32.

5.1 Setting up a new configuration

A X32 configuration is built in its own subdirectory, which is by default a subdirectory of the
x32 directory located in a standard X32 download. This directory should contain one file:
config.vh. This file contains all settings of the new X32 configuration. The file can be build
up from scratch, but it is recommended to copy the file from an existing configuration. The
x32-example configuration file contains all available settings, and comment on how to use
them. This configuration can easily be used as the base of a new configuration.

From the configuration file, the configuration specific library (x32.h and x32.c1) is cre-
ated, which is used to compile the loader, and finally build the new X32 bitfile (x32.bit). The
entire compilation process is executed by using the supplied Makefile in the root of the X32
directory. By typing make <name_of_subdirectory>/x32.bit the new X32 configuration is
compiled into <name_of_subdirectory> using <name_of_subdirectory>/config.vh.

5.2 Manual configuration

The X32 can be configured manually by editing the VHDL source files of the X32. Manually
editing the X32 source files gives great configuration power, as everything can be changed,
however does require some knowledge about the VHDL programming language. This section
will only cover changing the set of peripheral devices connected to the X32. All changes

33
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to the X32 with respect to peripheral devices are made in two files: toplevel.vhd and
peripherals.vhd. The first file contains the top level VHDL entity, and holds all 1/O
definitions. When adding, removing or changing peripherals connected to an I/O FPGA pin,
changes must be made in this file. The peripherals.vhd holds the connection between the
X32 and all peripherals. New peripherals must thus be instantiated and connected to the
X32 core in this file.

As the X32 supports automatic configuration of these two files, they do not exist as VHDL
source files, but as the unprocessed sourcefiles toplevel._vhd and peripherals._vhd. It
is not recommended to make any changes in these files when manually configuring the X32.
Instead, these files should first be preprocessed into standard VHDL source files. To create
toplevel.vhd and peripherals.vhd, a new configuration should be set up, as described
in the previous section. It is recommended to base the design on a simple configuration
such as the x32-minimal or x32-minimal-with-interrupts configurations, no changes have
to be made to the configuration file. When the new configuration directory is created, the
two files can be created by executing make <name_of_subdirectory>/toplevel.vhd and
make <name_of_subdirectory>/peripherals.vhd (which is basically the first step of build-
ing an automatic configuration). The files can now be edited, after which the configuration
build can be finished by executing make <name_of_subdirectory>/x32.bit.

As described earlier, the toplevel.vhd file contains the top level entity, which contains
all FPGA I/0 port declarations. New I/O pins can be declared for a new peripheral device by
adding the port to the toplevel entity declaration, adding a LOC statement to the declaration
zone of this file connecting the I/O port to a specific FPGA pin, and routing the pin to the
peripherals instance which is located in peripherals.vhd.

To actually add, remove or change a peripheral, the peripherals.vhd file should be
modified. This file consists of all peripheral device instances, and (de)multiplexers to connect
these devices to the X32 memory bus. To connect a new peripheral device to the X32, the
peripheral VHDL code should first be included or instantiated within this file. The connection
with the X32 consists of six signals: data_in, data_out, address, read, write and ready.
The data_in and data_out signals are the data lines from and to the processor respectively.
These values must always contain a valid 32-bit value, if a device generates or requires less
bits, the value should be sign-extended. The address signal contains the memory address
the X32 is reading from or writing to, and should be compared to the address of the new
peripheral, before acting on the read and write signals. The read and write signals are
driven by the processor, and are raised whenever the processor wants to read or write a
value from a peripheral. After the read or write signals are asserted, the peripheral address
specified by the address input should perform the read or write action. When done, the
ready signal must be asserted, after which the processor will de-assert the read or write
signal. A read and write cycle are shown in Figures 5.1 and 5.2.

As can be read in Section 4.1, peripherals are located at 0x80000000, and are 32-bit
apart. The peripheral index is obtained by removing the two most significant, and the two
least significant bits from the address, such that peripheral index 0, corresponds to memory
address 0x80000000, peripheral index 1 corresponds to memory address 0x80000004, etc. In
peripherals.vhd, the address is already stripped from the two most significant bits, the two
least significant bits should be ignored in this file.

To add a peripheral which allows to be read to, the main multiplexer in the peripheral
file should be extended with the address the new peripheral listens to. The main multiplexer
already strips the two least significant bits, such that the peripheral index can be used. Note



CHAPTER 5. CONFIGURABILITY 35

read
ME EAD_CYCLE

address ADDRESS /

data_out M ”’
wacy A

Figure 5.1: Peripheral read cycle
A read action starts with raising the read signal. At the same time, the address is placed on
the address signal. The peripheral should then set the data to the data_out signal and raise
the ready signal for one clock cycle. The time tMEM_READ_CYCLE is not limited, but should
be kept to a minimum.

write
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Figure 5.2: Peripheral write cycle
A write action starts with raising the write signal. At the same time, the address is placed
on the address, and the data on the data_in signal. The peripheral should then save the
data_in signal, and respond with raising the ready signal for one clock cycle. The time
tMEM_WRITE_CYCLE is not limited, but should be kept to a minimum.
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that the demultiplexer is only addressed by 8 address bits. This is done to decrease the size
of the multiplexer, as most designs will not have more than 256 peripherals. To add support
for reading from a peripheral located at peripheral index 0x04, the following code is added
to the demultiplexer:

—-- check only 8 address bits
case address(9 downto 2) is

when x"04" =>
ready <= ’17;
data_out <= peripheral_value;

end case

The ready signal is constantly set to logic high whenever reading (or writing) to this pe-
ripheral. In most cases this will work fine, as most peripherals are able to perform a read or
write signal in a single clock cycle. If this is not the case, the statement should be replaced
by ready <= peripheral_ready, and the peripheral device should generate its own ready
signal. In some cases, the peripheral needs to know whenever the X32 reads from the periph-
eral. When using buffers for example, the value must be popped from the buffer when the
X32 performs a read operation on the buffer. This can be achieved by demultiplexing the
read signal as follows:

peripheral_read <= ’1’ when address(9 downto 2) = x"04" and read = ’1’
else ’07;

The peripheral_read signal will be high whenever the X32 is reading from the new peripheral
device. The length peripheral_read will be high depends on the ready signal, but will be
one clock cycle whenever ready is fixed to logic high as shown in the example above.

To add a peripheral which allows to be written to, the peripheral should listen to assertions
on the write signal, when the address signal is equal to the address of the peripherals. A
peripheral specific write address can be obtained as follows:

peripheral _write <= ’1’ when address(9 downto 2) = x"04" and write = ’1’
else ’07;

In this case, the peripheral listens to peripheral index 0x04. Note that again only 8 bits of the
address are checked. When the peripheral_write signal is asserted, the peripheral should
copy the value on the data_in signal to an internal register, to use it for further processing. It
is important to remember that the data_in signal only contains valid data for the peripheral
at the moment peripheral_write is high.

Devices can generate IRQs by generating a pulse on one of the IRQ signals. In
peripherals.vhd, the std_logic_vector irgs is available, which is connected to the interrupt
controller. When a specific peripheral device has an output line device_irq, on which pulses
are generated whenever an interrupt is requested, the device can be connected to IRQ index
4 as follows:

irqs(4) <= device_irq;

Although it is technically possible to connect different devices to the same IRQ using OR-
gates, this is not recommended as it will not be possible to detect which device generated the
IRQ.
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5.3 Automatic configuration

Automatic configuration allows configuring the X32 by modifying a C-style header file, with-
out requiring any knowledge about the VHDL programming language, such that each C
programmer can create his own X32 configuration containing all peripheral devices he needs
for a specific task. Configuring the X32 is done through modifying the configuration file
(config.vh), which comes with each configuration.

The following sections describe the different configuration options available for configuring
the X32.

5.3.1 X32 core configuration

The X32 core configuration consists of a set of #define statements which configure the core
of the X32 system. Most of these values should always be set to there default values, since the
X32 system is only compatible with the default X32 core. These settings are merely included
for future versions of the X32 system which might, for example, support a 64 bit core.

/*
* The target platform, currently not used by the preprocessor
*  (REQUIRED)
*/

#define TARGET xs3e400

/*
* The clock speed, used to compute several timing constants
*  (REQUIRED)
*/

#define CLOCKSPEED 50000000

/*
* The amount of bits of a (long) long integer, currently
* only 32 is supported (REQUIRED)
*/

#define CORE_SIZE_LONG 32

/*
* The amount of bits of an integer, currently only 32 is
* supported (REQUIRED)
*/

#define CORE_SIZE_INT 32

/*
* The amount of bits of a short integer, currently only 16
* is supported (REQUIRED)
*/

#define CORE_SIZE_SHORT 16

/*
* The amount of bits of a pointer, currently only 32 is
* supported (REQUIRED)
*/

#define CORE_SIZE_POINTER 32

/*
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The amount of bits used to address peripheral devices,
8 bits results in a maximum of 256 different devices,
16 in 65536 and so on. The maximum value is
2"CORE_SIZE_POINTER-2. (REQUIRED)

* X ¥ *

*/
#define PERIPHERAL_ADDRESS_BITS 8
/*
* The amount of bits used by the peripheral data bus, this
* should be the same as CORE_SIZE_LONG, such that each
* peripheral can return long integers. Most peripheral
* devices require a 32 bit data bus (REQUIRED)
*/
#define PERIPHERAL_DATA_BITS 32

5.3.2 ROM Location

The ROM is copied to the RAM at a processor reset. Two variables define where to the ROM
is copied: ROM_LOCATION and ROM_ADDRESS_BITS.

The following rules apply to both variables: The least significant
ROM_ADDRESS_BITS bits of ROM_LOCATION must be 0, and the size of the ROM may not be
larger than 2"ROM_ADDRESS_BITS.

Default is a ROM_ADDRESS_BITS of 16, which means a maximum ROM of 64KB, and a
ROM_LOCATION of 0x000C0000, or 768K (last 16 bits zero). These settings are default for the
bootloader. When the bootloader is running at 768K, the first 768K in RAM are available for
programs. When compiling custom software into the ROM of the X32, these values should be
set to ROM_LOCATION 0x00000000, and ROM_ADDRESS_BITS 32, which places the custom ROM
at address zero, and allows the entire RAM to be written by the ROM.

/*

* ROM Target location (REQUIRED)

*/

#define ROM_LOCATION 0x000C0O000

/*

* Number of address bits used by the ROM (REQUIRED)
*/

#define ROM_ADDRESS_BITS 16

5.3.3 Reset signal configuration

The X32 reset signal is generally controlled by a peripheral device, such as a button. Two
different reset signals are generated, the initial reset and the normal reset. The normal reset
always resets the X32, the initial reset may only reset the X32 for the first time. The normal
reset is required, the initial reset is optional.

For both reset signals, the macros should contain a valid VHDL condition. The VHDL
code generated is as follows:

reset <= ’1’ when NORMAL_RESET else ’0’).
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The double reset system is created to allow the use of all 4 buttons on the Spartan 3
Starter Board, instead of allocating 1 as reset button. Instead, the normal reset is initiated
when all 4 buttons are pressed. The board however sends an initial pulse on button(3) when
it boots up, button(3) must thus reset the X32 on the first time it triggers.

Note: buttons is a signal name generated by the 1:1 input device buttons.

/* initial reset signal (OPTIONAL) =/
#define INITIAL_RESET buttons(3) = ’1’°
/* normal reset signal (REQUIRED) x*/
#define NORMAL_RESET_SIGNAL buttons = "1111"

5.3.4 Interrupt configuration

The X32 can be compiled with, or without interrupts. Interrupts support is automatically
added when the INTERRUPTS_ENABLE macro is defined. Furthermore, the amount of IRQ
lines, and some standard IRQ indices generated by the processor core itself can be configured
in this section.

/*
* define INTERRUPTS_ENABLE to compile the X32 with interrupt
* support (OPTIONAL)
*/
#define INTERRUPTS_ENABLE
/*
* nr of devices which can generate an interrupt (number of
* TRQ lines). IRQ’s may not be shared between devices.
* (REQUIRED if INTERRUPTS_ENABLE)
*/
#define INTERRUPT_COUNT 16
/*
* device index for the interrupt enable register (the
* peripheral will be located at peripherals[index] or
* 0x80000000 + index * 4) (must be unique) must be defined
* to use interrupts (otherwise all interrupts will remain
* disables all the time). It may safely remain defined when
* interrupts are disabled, the register won’t be created)
* (REQUIRED if INTERRUPTS_ENABLE)

#define INTERRUPT_ENABLE_INDEX 0x20
/*
* trap instruction IRQ (mostly used by debugging software)
*  (OPTIONAL)
*/
#define TRAP_IRQ 0x09
/*
*x overflow IRQ (OPTIONAL)
*/
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#define OVERFLOW_IRQ OxOE
/*
* division by zero IRQ (OPTIONAL)
*/
#define DIVO_IRQ OxOF
/*
* out of memory irq
*/
#define OO0OM_IRQ 0x03
/*
The following settings define the behavior of the out of

memory irq. OOM_LOWER_BOUND should be set to the maximum
allowed memory address, and OOM_UPPER_BOUND should be set
to the minimum allowed memory address, and must be larger
than OOM_LOWER_BOUND. The area between OOM_LOWER_BOUND and

*

*

*

*

*

* OOM_UPPER_BOUND is therefore forbidden. OOM_LOWER_BOUND
* should be set slightly less then the memory size, since
* some memory space is needed to handle the out of memory
* interrupt.

*
*
*
*

Note: both values must be smaller than 0x80000000 for the

Xilinx compiler

*/
/* everything above 0x80000000 is ok (peripherals) */
#define OOM_UPPER_BOUND Ox7FFFFFFF

/* everything below 1020K is ok (leaves 4K for interrupt) */

#define OOM_LOWER_BOUND 0xOOOFF000

5.3.5 X32 library configuration

40

Some often used library functions depend on the X32 configuration used. These functions
are not included in the standard library, but in the X32 library, which depends on the X32
configuration. The functions putchar and getchar, as well as the macro X32_MS_CLOCK can
be configured using five macros explained below. All macros will appear in x32.h, only the

LIBCODE prefix is replaced by the X32 prefix.

* Code to get a number which represents time, both in

* milliseconds and microseconds. All X32 configurations
* should support a millisecond clock, the microsecond

* clock may be left out, in which case LIBCODE_US_CLOCK
* should return LIBCODE_MS_CLOCK * 1000 (REQUIRED)
*
*
*
*

Usage in C:
ms = X32_MS_CLOCK;
us = X32_US_CLOCK;
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*/
#define LIBCODE_MS_CLOCK (peripherals[0x04])
#define LIBCODE_US_CLOCK (peripherals[0x04]%1000)

/*
* Code to write a character to stdout (REQUIRED)
x/

#define LIBCODE_X32_STDOUT (peripherals[0x01])

/*

* Code to get the status of stdout. This should return
nonzero when it is possible to write to stdout (REQUIRED)

*
*
* Usage in C:
*  while(!X32_STDOUT_STATUS) ;
*  X32_STDOUT = ’A’;
*/
#define LIBCODE_X32_STDOUT_STATUS (peripherals[0x02] & 0x01)
/*
* Code to read a character from stdin (REQUIRED)
*/
#define LIBCODE_X32_STDIN (peripherals[0x01])
/*
Code to get the status of stdin. This should return
nonzero when a byte is available to read (REQUIRED)

Usage in C:
while (!1X32_STDIN_STATUS);
¢ = X32_STDIN;

* X X X ¥ *

*/
#define LIBCODE_X32_STDIN_STATUS (peripherals[0x02] & 0x02)

5.3.6 Peripheral configuration

The peripheral configuration section allows configuring several special peripherals which can
either be included once, or not in a specific X32 configuration.

/*
* unique id for an unique peripheral bus setup (this number
* is returned when reading peripheral device 0), use this

* value to identify a design when working with multiple
* configurations (REQUIRED)
*/
#define PERIPHERAL_ID 1
/*
* device index for the instruction counter (the peripheral
* will be located at peripherals[index] or 0x80000000 +
* index * 4) (must be unique) may be undefined to suppress
* an instruction counter device (OPTIONAL)
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*/

#define INSTRUCTION_COUNTER_INDEX 0x03

/*

the processor state register, this is a special register
which is connected to the error output lines of the
processor. The error bits are set when the lines go high
(the errors occur), they automatically reset when they
are read. This register can be used to detect processor
exceptions when no interrupt controller is available

The complete register looks like this:

bit 7: trapped

bit 6: out of memory

bit 5: <not used>

bit 4: overflow

bit 3: division by zero

bit 2: <not used>

bit 1: running in simulator
bit 0: booting

These bits can also be read using one of the following macros
defined in x32.h, however, as these read the entire state
register, all flags will be reset when reading one of them.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* STATE_BOOTING returns true whenever the processor booted since
* last time the state was read
* STATE_DIVISION_BY_ZERO returns true whenever the processor
* encountered a division by zero since last time the state was
* read
* STATE_OVERFLOW returns true whenever the processor
* encountered overflow since last time the state was read
* STATE_OUT_OF_MEMORY returns true whenever the processor ran
* out of memory since the last time the state was read
* STATE_TRAPPED returns true whenever the processor encountered
* a trap instruction since last time the state was read
* STATE_SIMULATOR returns always false on the X32, and always
* true on the bytecode interpreter

*/
#define PROCSTATE_REGISTER_INDEX 0x09

5.3.7 Configuring the peripheral bus

Peripheral devices can be added to the peripheral bus using macros. These macros are device
type depended, but all look like

ADD_SOME_DEVICE(parameterl, parameter2, parameter3, ...). The devices available in
the standard X32 release can be found in Appendix B, along with the exact macro definitions,
and some sample code to access them.
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5.4 Creating new peripherals

New types of peripheral devices can be added to the configuration system of the X32. Some
knowledge about the VHDL programming language, and the use of a preprocessor (such as
the C preprocessor) is required to include new peripheral devices.

Each peripheral device included in the X32 configuration must have a header file containing
some code which links the peripheral to the X32. It is recommended to put as much of the
VHDL code required for the peripheral in normal VHDL files, as they are much easier to
write and debug. This section describes how the X32 configuration system works, and how
the peripheral header files can be created.

In Section 5.4.1, the configuration system is roughly described, which is important to
understand before writing peripheral header files. Sections 5.4.2 to 5.4.4 describe how new
header files can be created, and Section 5.5.1 to 5.5.3 contain some examples of peripherals
already included in the X32.

5.4.1 The configurability system

Before being able to attach custom components to the X32, some basic understanding of
the way the X32 configuration is build is required. Each X32 configuration differs in only
three files: peripherals.vhd, which contains the link between the X32 and all peripheral
devices, toplevel.vhd, which contains all in-/output signals, and x32.h, which is automati-
cally generated to contain macro names containing all peripheral and interrupt addresses of
the included devices.

These three files are generated by preprocessing peripherals._vhd, toplevel._vhd and
x32._h. These all include the configuration file config.vh, and their contents greatly depend
on the contents of the configuration file. The generated VHDL source files peripherals.vhd
and toplevel.vhd are then combined with the other VHDL source files, and synthesized
into the X32, while the generated C header file x32.h is combined with several C sources
and is compiled into the X32 (configuration specific) library. This process is visualized in
Figure 5.3. The preprocessor used is called FilePP [7], which behaves much like the standard
C preprocessor, but is a bit more powerful. The most important differences with the C
preprocessor are listed here:

e FilePP is modular, different modules with different tasks can be imported into FilePP
to include extra functionality. These modules are used to add some required extra
functionality to the preprocessor.

e All C comment is automatically removed from all files, which allows the use of C com-
ment within VHDL files. A side effect is that its no longer possible to include comment
in x32.h.

e Multi-line macros can be created using the #bigfunc and #endbigfunc keywords (see
the FilePP Manual [7] for more info).

e The function UnHex () is available, which converts C style constants
(0x[0-9A-F1+ for hexadecimal and 0[0-7]+ for octal) to decimal. The decimal values
can be converted to the std_logic_vector type using the conv_std_logic_vector VHDL
function.
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Figure 5.3: Configuration Path

The VHDL source files peripherals._vhd and toplevel._vhd, and the C header file x32._h
are preprocessed using FilePP according the the configuration stored in config.vh. The pre-
processed VHDL files are then combined with the remaining VHDL source files, and synthe-
sized into an FPGA design. The X32 C library (containing configuration specific functions)
18 compiled using x32.h and creates x32.cl. x32.h is also available to C programmers, and
will contain the locations of all peripheral devices, all interrupt indices, and the prototypes of
all functions available in the X32 C library.
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e The function pp_to_std_logic_vector is available, which converts C style constants
(0x [0-9A-F]+ for hexadecimal, 0[0-7]+ for octal and [0-9]+ for decimal) to
std_logic_vector format. The second parameter to this function denotes the number
of bits. e.g.: pp_to_std_logic_vector(0x10, 8) preprocesses into "00010000".

The standard X32 settings are simply stored in macros. For example, the number of inter-
rupts available, is stored in the INTERRUPT_COUNT macro. All occurrences of INTERRUPT_COUNT
in the VHDL source files are thus automatically replaced by the value of the macro by the
preprocessor. When adding a peripheral device, code at different locations within both VHDL
source files must be added. To achieve this, the configuration file is included several times,
at all the locations VHDL code might need to be added. Each time, one of seven macros is
defined. By checking which of these macros is defined, code for the correct section can be
added. The available sections are described in Section 5.4.3. One of the sections, for example,
is the peripheral VHDL section. When generating code for this section, the __IN_VHDL macro
is defined. To include code in the this section, the following code must be used:

#ifdef __IN_VHDL
-- This line is added to the peripherals.vhd architecture section!
#endif

It is imperative that not a single line is generated when preprocessing the configuration
file, and none of the section macros is defined. All code statements must thus be surrounded
by #ifdef and #endif sections.

When including a peripheral device, multiple code statements, at different locations must
be added to the VHDL source files. Therefore, the preprocessor has support for multi-line
macros. Each peripheral device has its own macro (which can be stored in any file, as long as
the file is included in the main configuration file). Within this macro, code is generated for
the different sections. To make it a little easier, connection_builder.vh can be included,
which contains several predefined macros to attach a device to the X32 peripheral bus and
interrupt system. These macros are listed and explained in Section 5.4.4.

5.4.2 Creating a new peripheral header file

Peripheral header files contain the ADD_*_DEVICE macro, and can be included by the config-
uration file. The file should be named device.vh where device is the name of the peripheral
device. For easy access, it is recommended to place the file in the /x32/vhdl/peripherals
directory. The macro is created using the #bigfunc statement, which is similar to the stan-
dard #define statement, except that the end of the macro is not defined by the end of the
line, but by the occurrence of the #endbigfunc statement. The macro should have at least
two parameters: then NAME and INDEX parameter, which respectively hold a unique name for
the device, and the index on which the device is connected to the peripheral bus. All signals
used by the peripheral should be prefixed by NAME, such that it is possible to include mul-
tiple instances of the same peripheral device. The following code shows a very basic macro
declaration:

#bigfunc ADD_SIMPLE_DEVICE(NAME, INDEX, SOME_OTHER_DEVICE_PARAMETER)
-—- VHDL code connecting simple device named NAME to the X32 at
- index INDEX

#endbigfunc
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VHDL code can be generated by modifying the code the macro generates, which is explained
in the next sections. Any extra VHDL files used by a peripheral device should be added to the
PERIPHERAL_SOURCES variable in the X32 Makefiles Makefile.linux and Makefile.windows.

5.4.3 The code sections

Using the configurability system, VHDL and C code can be generated at seven different
sections within the X32. To identify which section is currently created, each section has its
own unique macro, which is defined when the preprocessor is generating code in this section.
The list of macros is given here:

__IN_VHDL: The architecture of the peripherals bus component, any VHDL code can
be written here. This section is mostly used to instantiate other VHDL components
used by the peripheral device.

__IN_DECL: The declaration zone of __IN_VHDL. Signals used in the
__IN_VHDL section can be declared here.

__IN_TL_DECL: The declaration zone of the top level VHDL component. Port maps
are made here using the LOC attribute. Nothing should have to be written to this zone,
the REGISTER_PIN macro automatically generates the LOC attribute line.

__IN_SIGLIST: The signal list of the peripheral bus component, used to route signals
from the top level component to the peripheral bus component such they are available
in the __IN_VHDL section. Like the

__IN_TL_DECL section, this section does not need to be used, the

REGISTER_PIN macro takes care of routing signals.

_IN_SIGMAPLIST: The signal mapping section of the top level and the peripheral bus
components. Again, this section is completely maintained by the REGISTER_PIN macro.

_IN_MUX: The mux which connects all peripheral devices to the peripheral bus (its
not actually a real bus). The code for this section is automatically generated by using
the CREATE_MUX_ENTRY macro.

__IN_HEADER: All code in this section is automatically included in x32.h. It is thus the
only section which should contain C code instead of VHDL code. The PERIPHERAL_*
macros are automatically generated when using CREATE_MUX_ENTRY. The INTERRUPT_x*
macros are automatically created when using REGISTER_IRQ of any of its derivatives;
CREATE_INTERRUPT_ON_CHANGE and CREATE_INTERRUPT_ON_RISING_EDGE. Any extra
macros can be defined in this section. Note that by adding #define SOMEMACRO to
the __IN_HEADER section, this will result in the creation of the SOMEMACRO macro, not
in the generation of the

#define SOMEMACRO statement. Therefore, code which might be interpreted by the
preprocessor during configuration, must be written using the printf statement, e.g.
printf ("#define SOMEMACRO"). It is not possible to include comments in x32.h.

In general, only the __IN_VHDL and the __IN_DECL sections are required, the code for the
other sections can be automatically generated by some predefined macros, which are located
in connection_builder.vh. The available macros are discussed in Section 5.4.4.
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5.4.4 Available macros

The following macros are available when including connection_builder.vh in a periph-
eral device header file. These macros all generate VHDL code for tasks shared amongst
many peripheral devices, such as connecting a signal to a specific entry on the multiplexer
connecting all peripherals to the X32, and routing an FPGA pin to a signal available in
peripherals.vhd. Some macros expect signal names as input, all signals should have a
unique name and can best be prefixed with the unique device name. All signals should also
be of type std_logic_vector, even if a signal is only one bit wide.

REGISTER_INPUT_PIN
Format:
REGISTER_INPUT_PIN(NAME, WIDTH, PINS)

This macro adds an input pin to the toplevel component of the X32, and routes it to the
peripheral bus component. The signal is automatically synchronized with the clock using a
flipflop. After using this macro, a signal named NAME of type
std_logic_vector (WIDTH-1 downto 0) is available in the __IN_VHDL section. The FPGA
pins must be specified by the PINS parameter. Since the signal is an input signal, it can only
be read. Note that one bit signals are not created as std_logic, but as
std_logic_vector(0 downto 0).

Example:

/* Connect input pins T3 and N11 to signal sig_input */
REGISTER_INPUT_PIN(sig_input, 2, "T3 N11")

REGISTER_OUTPUT_PIN
Format:
REGISTER_QOUTPUT_PIN(NAME, WIDTH, PINS)

This macro is the counterpart of REGISTER_INPUT_PIN. The format is exactly the same,
the only difference is the fact that this macro creates an output pin instead of an input pin.
The signal can therefore only be assigned to.

Example:

/* Connect output pins T3 and N11 to signal sig_output */
REGISTER_OUTPUT_PIN(sig_output, 2, "T3 N1i1")

REGISTER_IRQ
Format:
REGISTER_IRQ(INDEX, SIGNAME, INTNAME)

This macro registers connects an existing signal to an IRQ line. The first parameter is
the TRQ index, the second the name of the signal the IRQ line must be connected to. The
final parameter should contain a name identifying the IRQ. The name will be used to create
the INTERRUPT_<NAME> macro in x32.h.

Example:
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/* Connect IRQ 4 to signal sig_input(0). The macro
INTERRUPT_INPUT is automatically created, and will have
the value 4. */

REGISTER_IRQ(4, sig_input(0), input)

CREATE_MUX_ENTRY

Format:
CREATE_MUX_ENTRY (INDEX, SIGNAME, WIDTH, DEVNAME, SIGREADY)

This macro makes a connection from the peripheral device to the X32. It is required for
allowing C code to read from the peripheral. The INDEX parameter is the index on the periph-
eral bus. The SIGNAME should contain the name of the signal to connect to the peripheral bus,
and WIDTH the size of the signal (which must not be greater than the PERIPHERAL_DATA_BITS
setting). The third parameter is used to create the PERIPHERAL_<DEVNAME> macro in x32.h.
The last parameter is connected to the ready signal. If the peripheral is able to execute read
and write operations in a single clock cycle, this value can be set to >1°, otherwise, this value
should be set to the name of the ready signal generated by the peripheral device.

Example:

/* Connect the sig_input signal to the peripheral bus. The two
bit signal can be read from the two least significant bits
of peripherals[4]. The macro PERIPHERALS_INPUT is
automatically created and will hold the value 4. */

CREATE_MUX_ENTRY(4, sig_input, 2, input, ’17)

CREATE_WRITE_SIGNAL

Format:
CREATE_WRITE_SIGNAL (INDEX, NAME)

This macro creates a new signal which is asserted during a write operation of the X32 to
a specific peripheral address. This signal can be used by devices the X32 is allowed to write
to. At the moment the generated signal is high, the data_in signal contains data specific for
the current device.

Example:

/* Create a signal named ’write_to_address_8’ which is high
during the time the X32 writes to peripheral device 8. */
CREATE_WRITE_SIGNAL(8, write_to_address_8)

CREATE_READ_SIGNAL

Format:

CREATE_READ_SIGNAL(INDEX, NAME)
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This macro is the counterpart of the CREATE\_WRITE\_SIGNAL, and creates a signal which
is asserted during a write operation of the X32 from a specific peripheral address. This signal
can be used to detect when the X32 reads from a specific device. Some devices need to react
on read operations, for example, the RS232 UART pops a byte from the input buffer when
the X32 reads it.

Example:

/* Create a signal named ’read_from_address_8’ which is high
during the time the X32 reads from peripheral device 8. */
CREATE_READ_SIGNAL(INDEX, NAME)

CREATE_REGISTER

Format:
CREATE_REGISTER(INDEX, SIGNAME, WIDTH, DEVNAME)

The CREATE_REGISTER macro creates a register and attaches it to the peripheral mux.
This macro can be used by output devices which expect a constant valid input. The register
can be read and written by the X32 Core, and the output value of the register is constantly
available for the peripheral device. The INDEX parameter contains the index on the peripheral
mux. The SIGNAME contains the name of the signal connected to the output of the register,
and can be used as input for the peripheral device. The WIDTH parameter contains the size in
bits of the register, and the DEVNAME parameter contains the name of the device, which will
appear in x32.h.

Example:

/* the following macro creates a register at peripheral index
0x40. The X32 can read from and write to this 32-bit register,
and the output is available in sig_to_peripheral, which can
be used by the peripheral device. The macro
PERIPHERAL_DPC_PERIOD is created in x32.h and will have the
value 0x40. *x/

CREATE_REGISTER(0x40, sig_to_peripheral, 32, DPC_PERIOD)

CREATE_INTERRUPT_ON_CHANGE

Format:
CREATE_INTERRUPT_ON_CHANGE (INT_INDX, NAME, WIDTH)

The CREATE_INTERRUPT_ON_CHANGE macro uses the REGISTER_IRQ macro to generate an
irq when a source signal changes. The INT_INDX parameter holds the IRQ index, the NAME
parameter the signal name to check for changes, and the WIDTH parameter the size of the NAME
parameter.

Example:

/* raise an interrupt on irq 6 when any of the 4 signals in inputs
(inputs must be of type std_logic_vector(3 downto 0) change */
CREATE_INTERRUPT_ON_CHANGE(6, inputs, 4)
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CREATE_INTERRUPT _ON_RISING_EDGE

Format:
CREATE_INTERRUPT_ON_RISING_EDGE(INT_INDX, NAME)

The CREATE_INTERRUPT_ON_RISING_EDGE macro is similar to the
CREATE_INTERRUPT_ON_CHANGE macro, only it creates interrupts on the rising edge of a signal,
rather than on signal change. This macro can also only be used on single signals, of type
std_logic_vector(0 downto 0).

Example:

/* generate an interrupt on irq 4 on the rising edge of the signal
>input’ */
CREATE_INTERRUPT_ON_RISING_EDGE(4, input)

CREATE_INTERRUPT _ON_FALLING_EDGE

The CREATE_INTERRUPT_ON_FALLING_EDGE is similar to the
CREATE_INTERRUPT_ON_RISING_EDGE macro, except it generates interrupts on the falling edge
of the source signal.

5.5 Device examples

This section contains some examples on attaching new devices to the X32. The first to
subsections handle a simple output, and a simple input device. The third subsection describes
the Maxon decoder, used by the in2305 configuration of the X32.

5.5.1 A simple output device

This section describes how a simple output device can be made. The device consist of a simple
register connected to the peripheral bus, such that the X32 can read and write the register.
The output of the register is also directly connected to FPGA pins. This device is equivalent
to the 1 to 1 output device.

At first, a new header file must be created for the device. In this case, 1tol.vh is used.
Then, the macro definition must be created. A macro definition is usually done using the
#define statement. However, this only allows macros consisting of one line only. FilePP has
support for a #bigfunc statement, which acts like #define, except it does not terminate at
the end of the line, but at an #endbigfunc statement. All device settings which must be
configurable, must be parameters of the macro. The following macro definition is used:

#include "connection_builder.vh"

#bigfunc ADD_1T01_OUTPUT_DEVICE(NAME, INDEX, WIDTH, PINS)
#endbigfunc

The NAME parameter here is used as an unique name. All signals created by this device
are prefixed by this name, allowing multiple instances of this device. The second parame-
ter, INDEX, is the index on which the device is accessible at the peripheral bus. The WIDTH
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parameter contains the amount of bits, and thus output pins, the device controls, and fi-
nally, the PINS parameter should contain the pin names of the output pins. The include
of connection_builder.vh is required to use any of the macros described in the previous
section.

The first step is creating a register, and connecting it to the peripheral bus. The macro
CREATE_REGISTER, can be used to achieve this in one line, as shown in the following code:

#include "connection_builder.vh"

#bigfunc ADD_1T01_QUTPUT_DEVICE(NAME, INDEX, WIDTH, PINS)

/* create a WIDTH-bit register, and connect it to the
peripheral bus at address INDEX. The output of the
register is connected to the signal NAME_reg, and the
name of the device, used as macro name in x32.h, is

NAME. =/
CREATE_REGISTER(INDEX, NAME_reg, WIDTH, NAME)
#endbigfunc

The output signal of the register created above must now be connected to an FPGA output
pin, which is done by the following code:

#include "connection_builder.vh"

#bigfunc ADD_1T01_OUTPUT_DEVICE(NAME, INDEX, WIDTH, PINS)
CREATE_REGISTER(INDEX, NAME_reg, WIDTH, NAME)
/* connect output pins PINS to the signal named NAME */
REGISTER_OUTPUT_PIN(NAME, WIDTH, PINS)
/* some vhdl code to connect the output of the register
(NAME_reg) to the pin signal (NAME) */
#ifdef __IN_VHDL
NAME <= NAME_reg;
#endif
#endbigfunc

5.5.2 A simple input device

The simple input device is the counterpart of the simple output device described in the
previous section. It connects one or more input pins to the peripheral bus. In addition, it
creates an IRQ signal which is raised when the input signal (or one of the input signals)
changes. Just like the simple output device, first a macro must be defined in a vhdl header
file. The macro used is as follows:

#include "connection_builder.vh"

#bigfunc ADD_1TO1_INPUT_DEVICE(NAME, INDEX, INT_INDX, WIDTH, PINS)
#endbigfunc

The configuration parameters NAME, INDEX, WIDTH, and PINS are the same as the ones used
on the output device. The respectively contain the unique name of the device, the index on
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the peripheral bus, the amount of bits for the device and the pin names. The new parameter,
INT_INDX, is used to select an IRQ number. Note the missing E in INT_INDX. This is done
because one macro name must never be a part of another macro name. If INT_INDEX would
have been used, all instances of INT_INDEX would have been replaced by INT_###, where ###
would be the contents of the INDEX parameter. Changing the name of INDEX to BUS_INDEX
would also solve this problem.

The next step is connecting the input pin of the FPGA to the X32 peripheral bus, using
the REGISTER_INPUT_NAME and CREATE_MUX_ENTRY macros:

#include "connection_builder.vh"

#bigfunc ADD_1TO1_INPUT_DEVICE(NAME, INDEX, INT_INDX, WIDTH, PINS)

/* create the NAME signal, which is connected to input
pin(s) PINS x/

REGISTER_INPUT_PIN(NAME, WIDTH, PINS)

/* connect signal NAME with width WIDTH to peripheral bus
index INDEX. The fourth parameter is the NAME used for
the PERIPHERAL macro in x32.h */

CREATE_MUX_ENTRY (INDEX, NAME, WIDTH, NAME)

#endbigfunc

Finally, the IRQ signal must be created. The CREATE_INTERRUPT_ON_CHANGE macro generates
a signal which is asserted whenever the input signal changes. The new signal is then connected
to the IR(Q signal.

#include "connection_builder.vh"

#bigfunc ADD_1TO1_INPUT_DEVICE(NAME, INDEX, INT_INDX, WIDTH, PINS)
REGISTER_INPUT_PIN(NAME, WIDTH, PINS)
CREATE_MUX_ENTRY (INDEX, NAME, WIDTH, NAME)
/* connect IRQ INT_INDX to signal NAME */
CREATE_INTERRUPT_ON_CHANGE (INT_INDX, NAME, WIDTH)

#endbigfunc

The code shown above is identical to the 1 to 1 input device included in all X32 releases.

5.5.3 The IN2305 Maxon decoder device

The maxon decoder is a very specific device used in the TU Delft IN2305 course. The decoder
is used to decode the speed and direction of a Maxon motor. The vhdl components for the
decoder, which will not be discussed in this section, take the two lines coming from the motor
as an input, and generates a 32 bit signed integer representing the speed and direction. The
component also has an error output, which is raised for one clock cycle on protocol errors,
and must generate an interrupt.

One part of the lab exercise is to see the difference between a hardware (vhdl) decoder,
and a decoder written in C. Both motor lines, must therefore also be available as raw inputs,
and must generate an interrupt on the rising and falling edges of the lines.

The first step in creating a new component is creating the macro definition. As seen in
the previous sections, this must be done using the #bigfunc and #endbigfunc keywords. To
maintain as much configurability as possible, The following settings must be configurable:
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e The device name, allowing multiple instances of the device

The peripheral addresses for both raw signal values, and the decoded value

The TRQ numbers for both signals, and decoder error
e The pin names for both inputs

This leads to the following macro header:

/* the device creation macro */

#bigfunc ADD_MAXON_DEVICE(NAME, INDEX_32, INDEX_A, INDEX_B,
INT_ERROR, INT_A, INT_B, PIN_A, PIN_B)

#endbigfunc

As explained above, both input lines must be connected directly to the peripheral bus,
and must generate interrupts on change. The easiest way to accomplish this is simply by
including two direct input devices, which do exactly that. Two 1-bit devices are created, to
distinguish the two interrupts (if a 2-bit device would have been used, only one interrupt
signal would be available):

/* include 1tol.vh to gain access to ADD_1TO1_INPUT_DEVICE */
#include "peripherals/ltol.vh"

/* the device creation macro */
#bigfunc ADD_MAXON_DEVICE(NAME, INDEX_32, INDEX_A, INDEX_B,
INT_ERROR, INT_A, INT_B, PIN_A, PIN_B)

/* create the 1 to 1 input devices. connect PIN_A to
INDEX_A and PIN_B to INDEX_B, IRQ INT_A and INT_B are
automatically created. the signals NAME_A and NAME_B
will become available containing the synchronized
inputs of PIN_A and PIN_B (note: these are of type
std_logic_vector (0 downto 0), not std_logic. the
macros PERIPHERAL_NAME_A, PERIPHERAL_NAME_B,
INTERRUPT_NAME_A and INTERRUPT_NAME_B are also
automatically created in x32.h */

ADD_1TO1_INPUT_DEVICE(NAME_A, INDEX_A, INT_A, 1, PIN_A)

ADD_1TO1_INPUT_DEVICE(NAME_B, INDEX_B, INT_B, 1, PIN_B)

#endbigfunc

Next, the maxon decoder VHDL component is included in the device. VHDL components
must be included in the __IN_VHDL section, and must be valid VHDL code. The code requires
two additional signals, the error signal and the 32-bit decoder output signal. Since the error
signal can directly be connected to the IRQ line, this signal is called NAME_int. The 32-bit
value signal is called NAME_dig. They must both be declared in the __IN_DECL section.

#include "peripherals/ltol.vh"



CHAPTER 5. CONFIGURABILITY 54

#bigfunc ADD_MAXON_DEVICE(NAME, INDEX_32, INDEX_A, INDEX_B,
INT_ERROR, INT_A, INT_B, PIN_A, PIN_B)

ADD_1TO1_INPUT_DEVICE(NAME_A, INDEX_A, INT_A, 1, PIN_A)
ADD_1TO1_INPUT_DEVICE(NAME_B, INDEX_B, INT_B, 1, PIN_B)

#ifdef __IN_DECL
/* declare NAME_dig and NAME_int */
signal NAME_dig : std_logic_vector(31 downto 0);
signal NAME_int : std_logic;
#endif
#ifdef __IN_VHDL
/* the port map with the maxon decoder */
1_NAME: entity work.maxon(behaviour)
port map (
/* clk and reset are the available clock and
reset signals */
clk => clk,
reset => reset,
/* NAME_A and NAME_B are
std_logic_vector(0 downto 0), the inputs
a and b are of type std_logic */
a => NAME_A(O),
b => NAME_B(0),
err => NAME_int,
value => NAME_dig
)3
#endif
#endbigfunc

The final step is connecting the NAME_dig signal with the peripheral bus, so it can be
read, and connecting NAME_int to the required IRQ line.

#include "peripherals/ltol.vh"

#bigfunc ADD_MAXON_DEVICE(NAME, INDEX_32, INDEX_A, INDEX_B,
INT_ERROR, INT_A, INT_B, PIN_A, PIN_B)

ADD_1TO1_INPUT_DEVICE(NAME_A, INDEX_A, INT_A, 1, PIN_A)
ADD_1TO1_INPUT_DEVICE(NAME_B, INDEX_B, INT_B, 1, PIN_B)

/* connect NAME_dig to the peripheral bus at address
INDEX_32, the macro PERIPHERAL_NAME_DECODED is added
to x32.h */

CREATE_MUX_ENTRY (INDEX_32, NAME_dig, 32, NAME_DECODED)

/* connect NAME_int to IRQ INT_ERROR x*/



CHAPTER 5. CONFIGURABILITY

REGISTER_IRQ(INT_ERROR, NAME_int, NAME_ERROR)

#ifdef __IN_DECL
signal NAME_dig : std_logic_vector(31 downto 0);
signal NAME_int : std_logic;

#endif
#ifdef __IN_VHDL
1_NAME: entity work.maxon(behaviour)
port map (
clk => clk,
reset => reset,
a => NAME_A(O),
b => NAME_B(0),
err => NAME_int,
value => NAME_dig
)3
#endif
#endbigfunc
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Appendix A

Supported library functions

Allthough the library is not completely ported yet, a great number of standard C library
functions are allready available for the X32. This appendix lists all available functions, macro’s
and variables available in the X32 library. None of these functions are documented here.

A.1 Standard C library

The following sections list the standard C library functions. Documentation for these func-
tions can be found in most C manuals.

A.1.1 assert.h

assert

A.1.2 ctype.h

isalnum islower isupper
isalpha isprint isxdigit
isentrl ispunct tolower
isdigit isspace toupper
isgraph

A.1.3 limits.h

CHAR_BIT LONG_-MAX SHRT_MIN
CHAR_MAX LONG_MIN UCHAR_MAX
CHAR-MIN SCHAR_-MAX UINT_MAX
INT_MAX SCHAR_MIN ULONG_MAX
INT_MIN SHRT_MAX USHRT_-MAX

A.1.4 setjmp.h
jmp_buf setjmp longjmp
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A.1.5 stdarg.h

va_list va_start va_arg
va_end

A.1.6 stddef.h

NULL size_t

A.1.7 stdio.h
puts printf vprintf
sprintf vsprintf puts

Note: putchar and getchar are configuration dependent, and are therefore included in
the X32 library.

A.1.8 stdlib.h

atoi malloc div

atol free Idiv

strtol abort div_t

strtoul exit Idiv_t

rand atexit EXIT_SUCCESS
srand abs EXIT_FAILURE
calloc labs

Note: malloc can only allocate blocks of memory within a user defined memory space. To
use malloc, statically allocate a memory block with the name malloc_memory. In addition,
an integer named malloc_memory_size is required which should hold the size of the memory
block. The following code allocates 1KB for malloc to use:

char malloc_memory[1024];
malloc_memory_size = 1024;

A.1.9 string.h

memchr stremp strlwr
memecmp strepy strncmp
memcpy strcoll strncpy
memmove strespn strspn
memset strerror strtok
strchr strlen strupr
strcat

A.2 Other libraries

The following subsections contain all non-standard libraries available for the X32. Documen-
tation for the softfloat library can be found at the softfloat website [4]. The X32 library is
discussed in Chapter 4.
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A.2.1

float32

float_detect_tininess
float_rounding_mode
float_exception_flags
float_raise

int32_to_float32
float32_to_int32
float32_to_int32_round_to_zero

softfloat.h

A.2.2 x32.h

peripherals
get_execution_level
set_execution_level
getchar

Note: all configuration specific macro’s are not listed here.

float32_round_to_int
float32_add
float32_sub
float32_mul
float32_div
float32_rem
float32_sqrt

restore_execution_level
combine_stackframe
LOCK

clock

99

float32_eq

float32_ le

float32_1t
float32_eq_signaling
float32_le_quiet
float32_1t_quiet
float32_is_signaling_nan

lock
unlock

putchar
CLOCKS_PER _SEC



Appendix B

Supported peripheral devices

This chapter lists all peripheral devices contained in the standard release of the X32, including
information on how to include them in a X32 configuration, and how to access them from C.

B.1 RS232 UART

The RS232 UART device is the main communication device of the X32. It allows sending and
receiving bytes over two lines according to the RS232 specifications, perfect for communicating
with other computer systems. The settings for the RS232 device can not be changed by
software, and only the bautrate can be changed in the configuration file. The RS232 settings
for the device are listed in Table B.1.

The device is connected to the X32 with two registers; a data and a status register. Writing
to the 8-bit data register causes the byte to be placed in the output buffer. The RS232 unit
constantly polls the buffer for new bytes, and when one is found, it codes the byte onto the
RS232 TX line. At the same time, the RS232 is continuously monitoring the RS232 RX
line. When a byte is received and decoded, it is placed into the input buffer. When reading
from the data register, the first byte in the buffer is returned, and removed from the buffer.
Any bytes received when the hardware buffer is full are lost. The status register is a two-bit
register, which should be monitored before writing to or reading from the data register. When
bit 0 is 1, the data register can be written to, when bit 0 is 0, the buffer is full and the device
is busy sending. When writing to the data register when bit 0 of the status register is 0,
the byte is lost. When bit 1 of the status register is 1, a byte is waiting in the input buffer.
When this bit is 0, the input buffer is empty. When reading the data register when no byte
is waiting, the result is undefined.

Table B.1: RS232 device settings

’ Setting name ‘ Value

Bautrate Configuration specific
Stop bits 1

Parity None

Handshaking | None
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Two interrupts are generated when a byte is send and received. Note that a successful
send does not mean the byte is also successfully received by the other endpoint.
The following code adds an RS232 to a configuration file:

ADD_RS232_DEVICE(primary, 0x01, 0x02, 8, 8, 115200,
"R13", "T13", 0x03, 0x04)

The first parameter (primary) is an identifier, which must be unique in the configuration file.
The second and third parameters (0x01, 0x02) are the addresses on which respectively the
data and status register are connected to the peripheral bus. The fourth and fifth parameters
(both 8) contain the sizes of the input buffer and output buffer in bytes respectively. The
sixth parameter (115200) contains the bautrate of the RS232 connection. This should be
the same as the bautrate of the other endpoint, and can not be changed by software. The
seventh and eighth parameters ("R13" and T13) contain the pin names of the TX and RX line
respectively. Finally, the ninth and tenth parameters (0x03, 0x04) contain the IRQ numbers
for the RX and TX interrupts.

Note that the bautrate is generated using complete clock cycles, and may be at most half
the clock speed. On a 50MHz clock, the maximum bautrate is thus 25000000, and the time
for each bit must be dividable by 20ns. A bautrate of 20000000 is thus not possible, since
this would require a period of 50ns, which is not dividable by the 20ns clock period.

B.2 4x7 Segment display

The 4x7 display segment device is used to control 4x7 display segment devices such as the
display of the Spartan 3 Starter Board. The display is controller by 12 lines, 8 controlling
each led for one of the four 7-segment display, and 4 lines to select the 7-segment display (see
the Spartan 3 Starter Board Manual [12] for more information.

The device creates a 16 bit register at a specified peripheral address. The contents of
this register is written in hexadecimal to the display. Using this device, it is not possible to
individually control the display segments.

The following code adds control for the display device to a configuration file:

ADD_4x7SEGDISP_DEVICE(display, 0x05,
"E14 G13 N15 P15 R16 F13 Ni6 P16", "E13 F14 G14 D14")

The first parameter (display) is an identifier, which must be unique in the configuration file.
The second parameter (0x05) is the peripheral bus address on which the register is created.
The third parameter are the eight data pins, and the last parameter the four control pins of
the display.

B.3 Omne-to-one input and outputs

One-to-one in-/output devices are direct connections between the X32 peripheral bus and
FPGA pins. Up to 32 pins can be controlled per device (after which each bit of the peripheral
bus connection is used). When only one pin is connected, only the least significant bit is used.

Input pins are automatically buffered using a flip-flop, to synchronize the incoming value
with the X32 clock. Also, an interrupt is generated whenever the input line switches from
low to high, or from high to low. When multiple pins are connected to the same port, an
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P X32 Memory bus

FPGA Input pin —p FF

X32 IRQ line

Figure B.1: One-to-one input device

interrupt indicates a change on any of the input lines. The block scheme of a 1-bit input
device is shown in Figure B.3.

The following code adds direct control eight input, and eight output pins, which are
connected to the Spartan 3 Starter Board switches and led respectively:

ADD_1TO1_INPUT_DEVICE(switches, 0x06, 0x08, 8,
"K13 K14 J13 J14 H13 H14 G12 F12")
ADD_1TO1_OUTPUT_DEVICE(leds, 0x07, 8,
"P11 P12 N12 P13 N14 L12 P14 K12")

For both devices, the first parameter (switches, leds) are identifiers, which must be unique
in the configuration file. The second parameter (0x06, 0x07) are the peripheral bus addresses
on which the devices can be accessed. The third parameter for the input device is the IRQ
to use. The fourth parameter on the input device, and third parameter on the output device
(8), represents the size of the input data in bits. All 8 leds, and all 8 switches are controlled
using the same peripheral device. The last parameter for both devices contains the FPGA
pins names for the in-/output lines.

The following example links the switches to the leds. The leds are automatically updated
when the state of on of the switches is changed:

int main() {
INTERRUPT_ADDRESS (0x08) = &switch_handler();
INTERRUPT_PRIORITY (0x08) = 10;
ENABLE_INTERRUPT (0x08) ;
ENABLE_INTERRUPT (GLOBAL_INTERRUPT) ;

while(1);
}
void switch_handler() {
peripherals[0x07] = peripherals[0x06];
}
B.4 Clock

A clock device is a simple register, which is incremented each n clock cycles, and can therefore
be used to time pieces of code. Each clock is reset to zero on a processor reset, but will
eventually overflow, and should thus never be used to measure absolute time.

The following code adds a millisecond clock to a configuration file:
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ADD_CLOCK_DEVICE(ms_clock, 0x04, 50000)

The first parameter (ms_clock) is an identifier, which must be unique in the configuration file.
The second parameter (0x04) is the peripheral bus address on which the counter value can
be read. The last parameter (50000) is the number of clock cycles to wait between counter
increments. On a 50MHz clock, the example above will thus increment each millisecond.
The following example shows how to use the clock to time the C function function():

unsigned start, stop;

start = ((unsigned*)peripherals) [0x04];
function();

stop = ((unsignedx)peripherals) [0x04];
printf("function() took %d ms\r\n", stop - start);

Note that a single overflow still gives a correct result, since the overflow is canceled out
by a second overflow caused by the subtraction. Double overflow, which is caused when
function() takes longer than the maximum period of time the clock register can hold, can
not be corrected.

B.5 Timer

A timer device counts to a certain amount of clock cycles. Each time it reaches this amount,
is fires an interrupt, and it restarts counting. It can therefore be used to execute code at
a specific interval. The timer contains a register which holds the amount of clock cycles to
count. The register can both be read, and be written through the peripheral bus.

The following code adds a timer device to a configuration file:

ADD_TIMER_DEVICE(timeril, 0x26, 0x01)

The first parameter (timer1) is an identifier, which must be unique in the configuration file.
The second parameter (0x26) is the peripheral bus address on which the counter value can
be read. The last parameter (0x01) is the IRQ for the timer interrupt.

The following example shows how the timer can be used to print a dot each 500 millisec-
onds:

int main() {
/* assume 50MHz clock */
((unsigned=)peripherals) [0x26] = 500%50000;
INTERRUPT_ADDRESS (0x01) = &timer_handler();
INTERRUPT_PRIORITY(0x01) = 10;
ENABLE_INTERRUPT (0x01) ;
ENABLE_INTERRUPT (GLOBAL_INTERRUPT) ;
while(1);

void timer_handler() {
printf(".");
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B.6 Watchdog timer

The timer handled in the previous section can also be used to create a watchdog timer by
using its interrupt signal as a reset signal. This can be done by including a new timer without
interrupt support (the timer may be connected to an interrupt, but it will never trigger, since
it also causes a hardware reset). The following code will create a timer without interrupt (the
#undef and #define statements are not required when compiling without interrupt support):

#undef INTERRUPTS_ENABLE
ADD_TIMER_DEVICE(watchdog, 0x27, 0x00)
#define INTERRUPTS_ENABLE

The timer device will automatically create a signal named watchdog_int. This signal is
normally connected to the IRQ line, but in this case, it must be connected to the reset signal:

#define NORMAL_RESET_SIGNAL buttons = "1111" or watchdog_int = ’1’

The watchdog timer is controlled just like a normal timer. It can be disabled by setting its
period to zero.

B.7 Software interrupt

A software interrupt device is a very simple device which generates an interrupt when it is
written to. The following code adds a software interrupt device to a configuration file:

ADD_SOFTINT_DEVICE(softintl, 0x21, 0x00)

The first parameter (softint1) is an identifier, which must be unique in the configuration
file. The second parameter (0x21) is the peripheral bus address on which a write will result
in an interrupt. The last parameter (0x00) is the IRQ for the software interrupt. See Section
4.3 on how to use software interrupts.

B.8 Pulse width modulator

A pulse width modulated signal is a signal consisting of a variable length pulse which repeats
itself at a fixed interval. Two standard devices are available to use pulse width modulation: a
digital to pulse converter (DPC), which converts a digital value into a pulse width modulated
signal, and a pulse to digital converter (PDC), which does the opposite. The dpc can be used
to create a pulse width modulated signal, while the PDC can be used to sense and decode
pulse width modulated signals.

B.8.1 Digital to pulse converter

The digital to pulse converter converts two 32-bit inputs, period and pulse width, to a pulse
width modulated signal. Both inputs are directly exposed to the peripheral bus, and should
be accessed as unsigned integers. The period register contains the number of clock cycles
after which the pulse repeats itself, and the pulse width register the number of clock cycles
the pulse is high. When the pulse width register is zero, the line is continuously low, when the
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pulse width register is greater than, or equal to the period register, the line is continuously
high.
The syntax to add a DPC device to the configuration file is as follows:

ADD_DPC_DEVICE(dpcl, 0x40, Ox41, "T3")

The first parameter (dpcl) is an identifier, which must be unique in the configuration file.
The second and third parameter (0x40, 0x41) are the peripheral addresses of the period and
pulse width registers respectively. Finally, the fourth parameter ("T3") contains the FPGA
output pin name for the pulse width modulated signal.

The following C code uses the dpc created above:

/* initialize at a period of 40 ms (assume 50MHz clock) */
((unsigned int*)peripherals) [0x40] = 40%50000;
/* duty cycle of 20 ms (assume 50MHz clock) */
((unsigned int*)peripherals) [0x41] = 20%50000;

Both the period, and the pulse width registers can be read back by reading the peripherals
array. Using the period register, it is very easy to set the dpc to a 50% duty cycle:

/* set dpc 1 to a duty cycle of 50% */
((unsigned intx)peripherals) [0x40] =
(((unsigned int*)peripherals) [0x41]%50)/100;

B.8.2 Pulse to digital converter

The pulse to digital converter is the counterpart of the digital to pulse converter, and is used
to sense and decode pulse width modulated signals. The device has one 32-bit output exposed
to the peripheral bus. This output contains the number of clock cycles the previous pulse
was high, and is updated each time a pulse ends. In addition, it generates an interrupt each
time the output is updated.

The syntax to add a PDC device to the configuration file is as follows:

ADD_PDC_DEVICE(pdcl, 0x30, 0xOA, "C15")

The first parameter (pdc1) is an identifier, which must be unique in the configuration file. The
second parameter (0x30) is the address of the pdc output on the peripheral bus. The third
parameter (0xOA) contains the IRQ number for the device, and the last parameter ("C15")
the FPGA input pin name for the pulse width modulated signal.

The following C code prints the value of the pdc in milliseconds, each time the pdc receives
a new pulse:

int main() {
INTERRUPT_ADDRESS (0x0A) = &pdc_handler();
INTERRUPT_PRIORITY (0xO0A) = 10;
ENABLE_INTERRUPT (0xOA) ;
ENABLE_INTERRUPT (GLOBAL_INTERRUPT) ;
while(1);
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void pdc_handler() {
/* assume 50MHz clock */
int ms = peripherals[0x30] / 50000;
printf ("pulse width: %d ms\r\n", ms);

B.9 PS/2 Reader

The PS/2 reader device is able to decode signals from a PS/2 port, which might be connected
to a keyboard or mouse. Currently, the PS/2 port can only be read, writing is not (yet)
supported.

The syntax to add a PS/2 reader device to the configuration file is as follows:

ADD_PS2_DEVICE(ps2, 0x14, 0x15, 0xOC, 8, "Mi6", "M15")

The first parameter (ps2) is an identifier, which must be unique in the configuration file.
The second and third parameters (0x14, 0x15) are the addresses of the PS/2 input and PS/2
status on the peripheral bus respectively. The last received byte can be read from the first
register, the second will return 1 when a byte is available, 0 otherwise. The fourth parameter
(0x0C) contains the IRQ number for the device, and the fifth parameter contains the size of
the input buffer (in bytes). The sixth and seventh parameters ("M16", "M15") contain the
FPGA pins for the PS/2 clock and data signals respectively.



Appendix C

Default configurations

This chapter contains information about the default configurations which ship with the X32
download. Each of the following sections contain a small description about this configuration,
and the peripherals and interrupts available when using that configuration.

C.1 Core

The X32 clean configuration (located in /X32-clean) contains no peripherals whatsoever. It
is merely used to compile the core on its own to gather statistics about the X32 core. Some
configuration details are listed in Table C.1.

Table C.1: X32 Core Configuration

Name X32 Core
Location /x32-core
Peripheral bus ID 1

Size (400K Spartan 3) | 47%
Interrupts enabled no

Reset signal reset button

C.2 Minimal

The X32 minimal configuration (located in /x32-minimal) contains a minimal set of periph-
erals. Some configuration details are listed in Table C.2, and the supported peripherals are
listed in Table C.3.

C.3 Minimal with interrupts

The X32 minimal with interrupts configuration is similar to the X32 minimal configuration,
with the exception of interrupts being enabled in this configuration. This configuration is able
to run most software, including real time operating systems such as uCos [6] and tics [11].
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Table C.2: X32 Minimal Configuration

Name X32 Minimal
Location /x32-minimal
Peripheral bus ID 2

Size (400K Spartan 3) | 49%
Interrupts enabled no

Reset signal All 4 buttons

Table C.3: X32 Minimal Peripheral Devices

Type Location macro ‘ Size ‘ Access‘
Unique ID PERIPHERAL_UID 32 r
RS232 Channel PERIPHERAL_PRIMARY_DATA 8 rw
RS232 Status Register PERIPHERAL_PRIMARY_STATUS | 2 r
Instruction Counter PERIPHERAL_INSTRCNTR 32 r
MS Counter PERIPHERAL_MS_COUNTER 32 r
4x7 Segment Display PERIPHERAL_DISPLAY 16 I'w
Switches PERIPHERAL_SWITCHES 8 r
Leds PERIPHERAL_LEDS 8 rw
Buttons PERIPHERAL_BUTTONS 4 r
Processor State Register PERIPHERAL_PROCSTATE 4 T

Interrupts marked with an asterisk are critical, and are not blocked by the global interrupt
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Some configuration details are listed in Table C.4, the supported peripherals are listed in
Table C.5, and the interrupts in Table C.6. All critical interrupts are marked with an asterisk.

Table C.4: X32 Minimal with Interrupts Configuration

Name X32 Minimal With Interrupts
Location /x32-minimal-interrupts
Peripheral bus ID 3

Size (400K Spartan 3) | 59%

Interrupts enabled yes

Reset signal All 4 buttons

Table C.5: X32 Minimal with Interrupts Peripheral Devices

’ Type Location macro ‘ Size ‘ Access‘
Unique ID PERIPHERAL_UID 32 r
RS232 Channel PERIPHERAL_PRIMARY_DATA 8 rw
RS232 Status Register PERIPHERAL_PRIMARY_STATUS | 2 r
Instruction Counter PERIPHERAL_INSTRCNTR 32 r
MS Counter PERIPHERAL_MS_COUNTER 32 r
4x7 Segment Display PERIPHERAL_DISPLAY 16 I'w
Switches PERIPHERAL_SWITCHES 8 r
Leds PERIPHERAL_LEDS 8 rw
Buttons PERIPHERAL_BUTTONS 4 r
Processor State Register PERIPHERAL_PROCSTATE 4 T
Interrupt Enable Register | PERIPHERAL_INT_ENABLE 32 rw
Software Interrupt PERIPHERAL_SOFTINT1 n/a | w
Timer 1 Period PERIPHERAL_TIMER1_PERIOD 32 I'w
Timer 2 Period PERIPHERAL_TIMER2_PERIOD 32 rw

C.4 1IN2305

The IN2305 configuration is a configuration specifically made for the TU Delft IN2305 lab-
course [1]. It is based on the x32-minimal configuration, with support for interrupts. In
addition, a DPC and Maxon decoder are added to control a Maxon motor.

Some configuration details are listed in Table C.7, the supported peripherals are listed in
Table C.8, and the interrupts in Table C.9. All critical interrupts are marked with an asterisk.

C.5 1IN4073

The IN4073 configuration is a configuration specifically made for the original TU Delft IN4073
labcourse [2] to control the Picolo model helicopter. It is based on the x32-minimal configu-
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Type

Index macro

Software Interrupt*®

INTERRUPT_SOFTINT1

Timer 1 Interrupt

INTERRUPT_TIMER1

Timer 2 Interrupt

INTERRUPT_TIMER2

RS232 Rx INTERRUPT_PRIMARY_RX
RS232 Tx INTERRUPT_PRIMARY_TX
Buttons INTERRUPT_BUTTONS
Switches INTERRUPT_SWITCHES
TRAP Instruction™® INTERRUPT_TRAP
Overflow* INTERRUPT _OVERFLOW

Division By Zero*

INTERRUPT_DIVISION_BY_ZERO

Out Of Memory*

INTERRUPT_OUT_OF _MEMORY

Interrupts marked with an asterisk are critical, and are not blocked by the global interrupt

Table C.7: X32 IN2305 Configuration
Name X32 IN2305
Location /x32-in2305
Peripheral bus ID 2305
Size (400K Spartan 3) | 66%
Interrupts enabled yes

Reset signal

All 4 buttons
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Table C.8: X32 IN2305 Peripheral Devices

’ Type ‘ Location macro ‘ Size ‘ Access‘
Unique ID PERIPHERAL_UID 32 r
RS232 Channel PERIPHERAL_PRIMARY_DATA 8 W
RS232 Status Register PERIPHERAL_PRIMARY_STATUS | 2 r
Instruction Counter PERIPHERAL_INSTRCNTR 32 r
MS Counter PERIPHERAL_MS_COUNTER 32 r
US Counter PERIPHERAL_US_COUNTER 32 r
4x7 Segment Display PERIPHERAL_DISPLAY 16 I'w
Switches PERIPHERAL_SWITCHES 8 r
Leds PERIPHERAL_LEDS 8 rw
Buttons PERIPHERAL_BUTTONS 4 r
Processor State Register PERIPHERAL_PROCSTATE 4 T
Interrupt Enable Register | PERIPHERAL_INT_ENABLE 32 rw
Software Interrupt PERIPHERAL_SOFTINT1 n/a | w
Timer 1 Period PERIPHERAL_TIMER1_PERIOD 32 Ir'w
Timer 2 Period PERIPHERAL_TIMER2_PERIOD 32 rw
DPC Period PERIPHERAL_DPC_PERIOD 32 rw
DPC Width PERIPHERAL_DPC_WIDTH 32 rw
Maxon decoder input 1 PERIPHERAL_ENGINE_A r
Maxon decoder input 2 PERIPHERAL_ENGINE_B r
Maxon decoder output PERIPHERAL_ENGINE_DECODED | 32 T
Custom output PERIPHERAL_CUSTOM 4 rw

Interrupts marked with an asterisk are critical, and are not blocked by the global interrupt

Table C.9: X32 IN2305 Interrupts

’ Type

‘ Index macro

Software Interrupt*

INTERRUPT_SOFTINT1

Timer 1 Interrupt

INTERRUPT_TIMER1

Timer 2 Interrupt

INTERRUPT_TIMER2

RS232 Rx INTERRUPT_PRIMARY_RX
RS232 Tx INTERRUPT_PRIMARY_TX
Buttons INTERRUPT_BUTTONS
Switches INTERRUPT_SWITCHES
TRAP Instruction™® INTERRUPT_TRAP
Overflow* INTERRUPT_OVERFLOW

Division By Zero*

INTERRUPT_DIVISION_BY_ZERO

Maxon input 1 change

INTERRUPT_ENGINE_A

Maxon input 2 change

INTERRUPT_ENGINE_B

Maxon decoder error

INTERRUPT_ENGINE_ERROR

Out Of Memory*

INTERRUPT_OUT_OF _MEMORY
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ration, with support for interrupts. In addition, five PDCs and four DPCs where added.

Some configuration details are listed in Table C.10, the supported peripherals are listed
in Table C.11, and the interrupts in Table C.12. All critical interrupts are marked with an
asterisk.

Table C.10: X32 IN4073 Configuration

Name X32 IN4073
Location /x32-in4073
Peripheral bus ID 4703

Size (400K Spartan 3) | 75%
Interrupts enabled yes

Reset signal All 4 buttons

C.6 IN4073-TREX

The IN4073-TREX configuration is a configuration specifically made for the new TU Delft
IN4703 labcourse [2], controlling the T-Rex model helicopter. It is based on the x32-minimal
configuration, with support for interrupts. In addition, a special component was included
which communicates to the microcontroller available at the T-Rex helicopter.

Some configuration details are listed in Table C.13, the supported peripherals are listed
in Table C.14, and the interrupts in Table C.15. All critical interrupts are marked with an
asterisk.

C.7 Example

The X32 example configuration is a large configuration containing all supported peripheral
devices. The configuration file is also filled with comments on how to modify this file, and it
can be used as the base of new configurations.

Due to the large amount of peripherals available in the X32 example configuration, the
longest path is slightly longer than the allowed 20ns. The X32 example configuration is
therefore overclocked by the 50MHz clock. Although the longest path estimates are based
on extreme conditions, and several tests show that the X32 example configuration works
correctly at several devices, it is not recommended to use this configuration.

Some configuration details are listed in Table C.16, the supported peripherals are listed
in Table C.17, and the interrupts in Table C.18. All critical interrupts are marked with an
asterisk.

C.8 RS232 Debug

The RS232 Debug configuration is a special configuration which does not used the standard
SRAM located at the Spartan 3 Starter Board [12]. Instead, the memory runs on a PC
connected to the X32 using the primary RS232 connection. This is a very useful setup to
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Table C.11: X32 IN4073 Peripheral Devices

’ Type ‘ Location macro ‘ Size ‘ Access‘
Unique ID PERIPHERAL_UID 32 r
RS232 Channel PERIPHERAL_PRIMARY_DATA 8 ™wW
RS232 Status Register PERIPHERAL_PRIMARY_STATUS | 2 r
Instruction Counter PERIPHERAL_INSTRCNTR 32 r
MS Counter PERIPHERAL_MS_COUNTER 32 r
US Counter PERIPHERAL_US_COUNTER 32 r
4x7 Segment Display PERIPHERAL_DISPLAY 16 I'w
Switches PERIPHERAL_SWITCHES 8 r
Leds PERIPHERAL_LEDS 8 rw
Buttons PERIPHERAL_BUTTONS 4 r
Processor State Register PERIPHERAL_PROCSTATE 4 T
Interrupt Enable Register | PERIPHERAL_INT_ENABLE 32 rw
Software Interrupt PERIPHERAL_SOFTINT1 n/a | w
Timer 1 Period PERIPHERAL_TIMER1_PERIOD 32 I'w
Timer 2 Period PERIPHERAL_TIMER2_PERIOD 32 rw
PDC 1 PERIPHERAL_PDC1 32 r
PDC 2 PERIPHERAL_PDC2 32 r
PDC 3 PERIPHERAL_PDC3 32 r
PDC 4 PERIPHERAL_PDC4 32 r
PDC 5 PERIPHERAL_PDC5 32 r
DPC 1 PERIPHERAL_PDC1_PERIOD 32 r
DPC 1 PERIPHERAL_PDC1_WIDTH 32 r
DPC 1 PERIPHERAL_PDC2_PERIOD 32 r
DPC 1 PERIPHERAL_PDC2_WIDTH 32 r
DPC 1 PERIPHERAL_PDC3_PERIOD 32 r
DPC 1 PERIPHERAL_PDC3_WIDTH 32 r
DPC 1 PERIPHERAL_PDC4_PERIOD 32 r
DPC 1 PERIPHERAL_PDC4_WIDTH 32 r
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Table C.12: X32 IN4073 Interrupts

’ Type

|

Index macro

Software Interrupt™®

INTERRUPT_SOFTINT1

Timer 1 Interrupt

INTERRUPT_TIMER1

Timer 2 Interrupt

INTERRUPT_TIMER2

RS232 Rx INTERRUPT_PRIMARY_RX
RS232 Tx INTERRUPT_PRIMARY_TX
Buttons INTERRUPT_BUTTONS
Switches INTERRUPT_SWITCHES
TRAP Instruction* INTERRUPT_TRAP
Overflow™ INTERRUPT_QOVERFLOW

Division By Zero*

INTERRUPT_DIVISION_BY_ZERO

PDC 1 INTERRUPT_PDC1
PDC 2 INTERRUPT_PDC2
PDC 3 INTERRUPT_PDC3
PDC 4 INTERRUPT_PDC4
PDC 5 INTERRUPT_PDC5

Out Of Memory*

INTERRUPT_OUT_OF _MEMORY

Interrupts marked with an asterisk are critical, and are not blocked by the global interrupt

Table C.13: X32 IN4073-TREX Configuration

Name X32 IN4073
Location /x32-in4073
Peripheral bus ID 4703

Size (400K Spartan 3) | 65%
Interrupts enabled yes

Reset signal

All 4 buttons
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Table C.14: X32 IN4073-TREX Peripheral Devices

’ Type ‘ Location macro ‘ Size ‘ Access‘
Unique ID PERIPHERAL_UID 32 r
RS232 Channel PERIPHERAL_PRIMARY_DATA 8 rw
RS232 Status Register PERIPHERAL_PRIMARY_STATUS | 2 r
Instruction Counter PERIPHERAL_INSTRCNTR 32 r
MS Counter PERIPHERAL_MS_COUNTER 32 r
US Counter PERIPHERAL_US_COUNTER 32 r
4x7 Segment Display PERIPHERAL_DISPLAY 16 Iw
Switches PERIPHERAL_SWITCHES 8 r
Leds PERIPHERAL_LEDS 8 rw
Buttons PERIPHERAL_BUTTONS 4 r
Processor State Register PERIPHERAL_PROCSTATE 4 T
Interrupt Enable Register | PERIPHERAL_INT_ENABLE 32 r'w
Software Interrupt PERIPHERAL_SOFTINT1 n/a | w
Timer 1 Period PERIPHERAL_TIMER1_PERIOD 32 rw
Timer 2 Period PERIPHERAL_TIMER2_PERIOD 32 rw
T-Rex Count PERIPHERAL_TREX_COUNT 32 r
T-Rex Timestamp PERIPHERAL_TREX_TIMESTAMP | 32 r
T-Rex Sensor 0 PERIPHERAL_TREX_SO 32 r
T-Rex Sensor 1 PERIPHERAL_TREX_S1 32 r
T-Rex Sensor 2 PERIPHERAL_TREX_S2 32 r
T-Rex Sensor 3 PERIPHERAL_TREX_S3 32 r
T-Rex Sensor 4 PERIPHERAL_TREX_S4 32 r
T-Rex Sensor Actuator PERIPHERAL_TREX_A 32 w
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Table C.15: X32 IN4073-TREX Interrupts

’ Type ‘ Index macro
Software Interrupt™® INTERRUPT_SOFTINT1
Timer 1 Interrupt INTERRUPT_TIMER1
Timer 2 Interrupt INTERRUPT_TIMER2
RS232 Rx INTERRUPT_PRIMARY_RX
RS232 Tx INTERRUPT_PRIMARY_TX
Buttons INTERRUPT_BUTTONS
Switches INTERRUPT_SWITCHES
TRAP Instruction*® INTERRUPT_TRAP
Overflow* INTERRUPT_OVERFLOW
Division By Zero* INTERRUPT_DIVISION_BY_ZERO
T-Rex Inbound commu- | INTERRUPT_TREX
nication
Out Of Memory* INTERRUPT_OUT_OF _MEMORY

Interrupts marked with an asterisk are critical, and are not blocked by the global interrupt

Table C.16: X32 Example Configuration

Name X32 Example
Location /x32-example
Peripheral bus ID 5

Size (400K Spartan 3) | 71%
Interrupts enabled yes

Reset signal All 4 buttons
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Table C.17: X32 Example Peripheral Devices

Type

|

Location macro \ Size

Access ‘

Unique ID

PERIPHERAL_UID 32 r

RS232 Channel

PERIPHERAL_PRIMARY_DATA 8 r'w

RS232 Status Register

PERIPHERAL_PRIMARY_STATUS | 2 r

Instruction Counter PERIPHERAL_INSTRCNTR 32 r
MS Counter PERIPHERAL_MS_COUNTER 32 r
4x7 Segment Display PERIPHERAL_DISPLAY 16 r'w
Switches PERIPHERAL_SWITCHES 8 r
Leds PERIPHERAL_LEDS 8 rw
Buttons PERIPHERAL_BUTTONS 4 r
Processor State Register PERIPHERAL_PROCSTATE 4 r
Interrupt Enable Register | PERIPHERAL_INT_ENABLE 32 Iw
Software Interrupt PERIPHERAL_SOFTINT1 n/a | w

Timer 1 Period

PERIPHERAL_TIMER1_PERIOD | 32 r'w

Timer 2 Period

PERIPHERAL_TIMER2_PERIOD | 32 r'w

Watchdog Timer

PERIPHERAL_WATCHDOG_PERIOD 32 Ir'w

Table C.18: X32 Example Interrupts

’ Type

|

Index macro

Software Interrupt*

INTERRUPT_SOFTINT1

Timer 1 Interrupt

INTERRUPT_TIMER1

Timer 2 Interrupt

INTERRUPT_TIMER2

RS232 Rx INTERRUPT_PRIMARY_RX
RS232 Tx INTERRUPT_PRIMARY_TX
Buttons INTERRUPT_BUTTONS
Switches INTERRUPT_SWITCHES
TRAP Instruction* INTERRUPT_TRAP
Overflow* INTERRUPT_OVERFLOW

Division By Zero*

INTERRUPT_DIVISION_BY_ZERO

Out Of Memory*

INTERRUPT_OUT_OF _MEMORY

Interrupts marked with an asterisk are critical, and are not blocked by the global interrupt

7
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detect errors in the controller statemachine of the X32, since the X32 can be stepped through
each memory action (at least one per instruction). For more information on using the X32
RS232 debugger, see the readme file in the configuration directory. Some configuration details
are listed in Table C.19.

Table C.19: X32 RS232 Debug Configuration

Name X32 RS232 Debug
Location /x32-rs232debug
Peripheral bus ID 6

Size (400K Spartan 3) | 55%

Interrupts enabled no

Reset signal all 4 buttons

C.9 Bytecode interpreter

The interpreter acts like an X32 with interrupt support. The supported peripherals are listed
in Table C.21, and the supported interrupts in Table C.22. Note, that the buttons, switches,
leds and display are not connected. The console peripheral acts just like an RS232 peripheral,
except it is connected to stdin and stdout of the interpreter, rather than an RS232 port.

Some configuration details are listed in Table C.20, the supported peripherals are listed
in Table C.21, and the interrupts in Table C.22. All critical interrupts are marked with an
asterisk.

Table C.20: Bytecode Interpreter Configuration

Name Bytecode Interpreter
Location n/a

Peripheral bus ID 11

Size n/a

Interrupts enabled yes

Reset signal n/a

When more, less or different peripherals need to be tested, they must manually be added
to the interpreter_peripherals.c file in the x32-tools/src directory. See the comments
in this file for more information on changing the peripherals of the interpreter.
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Table C.21: Bytecode Interpreter Peripheral Devices

’ Type Location macro ‘ Size ‘ Access‘
Unique ID PERIPHERAL_UID 32 r
Console PERIPHERAL_PRIMARY_DATA 8 rw
Console Register PERIPHERAL_PRIMARY_STATUS | 2 T
Instruction Counter PERIPHERAL_INSTRCNTR 32 r
MS Counter PERIPHERAL_MS_COUNTER 32 r
4x7 Segment Display PERIPHERAL_DISPLAY 16 Iw
Switches PERIPHERAL_SWITCHES 8 r
Leds PERIPHERAL_LEDS 8 r'w
Buttons PERIPHERAL_BUTTONS 4 r
Processor State Register PERIPHERAL_PROCSTATE 4 T
Interrupt Enable Register | PERIPHERAL_INT_ENABLE 32 r'w
Software Interrupt PERIPHERAL_SOFTINT1 n/a | w
Timer 1 Period PERIPHERAL_TIMER1_PERIOD | 32 r'w
Timer 2 Period PERIPHERAL_TIMER2_PERIOD | 32 Ir'w

Table C.22: Bytecode Interpreter Interrupts

’ Type

‘ Index macro

Software Interrupt*

INTERRUPT_SOFTINT1

Timer 1 Interrupt

INTERRUPT_TIMER1

Timer 2 Interrupt

INTERRUPT_TIMER2

Console Rx

INTERRUPT_PRIMARY_RX

Console Tx

INTERRUPT_PRIMARY_TX

Buttons INTERRUPT_BUTTONS
Switches INTERRUPT_SWITCHES
TRAP Instruction™® INTERRUPT_TRAP
Overflow™* INTERRUPT_OVERFLOW

Division By Zero*

INTERRUPT_DIVISION_BY_ZERO

Out Of Memory*

INTERRUPT_OUT_OF _MEMORY

Interrupts marked with an asterisk are critical, and are not blocked by the global interrupt
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Frequently Asked Questions

The compiler always creates .dbg files, even if I don’t use the -g command line parameter
The linker always creates .dbg files if any debug symbols are found, regardless of the
-g parameter. If .dbg files are created without using the -g parameter this is probably
caused by importing object or library files which are compiled with debugging symbols.
Make sure the libraries are not compiled with debugging symbols.

The X32 is showing strange behavior when executing my software
Make sure all function prototypes are correct (and not missing), LCC generates only
warnings for incompatible function declarations, but the X32 can’t handle them.

The upload tool hangs when trying to upload software
Try resetting the X32. Also, make sure no other applications are using the serial device,
and if required, restart the computer to free the serial device.

When I try to program the ROM of the Digilent Inc. Spartan 3 Starter Board, I get the
message "The ROM is write protected’ (or similar)

This is probably caused by a cable disconnect during programming. Try clearing the
ROM several times using the authentic Xilinx programming tool (Impact), this will
reset the write protection flag.

The compiler is not able to find the putchar and/or getchar library functions.

These functions are X32 configuration specific, and are not part of the standard library.
Instead they are located in the X32 library (x32.cl, x32.h, which ship with the X32
configuration used). Move or link these files into the 1ib-X32 folder in X32-tools.

I installed a custom software program into the ROM of the X32, but it does not show
any sign of life. When the software is loaded directly into the RAM using the loader it
works fine

— Make your software is compiled to run from the same location as the X32 is con-
figured to store its RAM. See 3.3.1 for details.

— The software might be too big for the ROM. Try and see if a smaller program has
the same problems
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o When compiling my X32 configuration I get a “timing constraints not met” message
This means the longest path in the generated design is longer than 20 nanoseconds.
Since the Spartan 3 Starter Board runs at 50MHz, the X32 is running overclocked.
There are three solutions to this problem:

— Run the place and route utility in extra effort mode. See Section 2.2.3 on how
this can be achieved.

— Remove one or more unused peripheral devices from the design. The smaller the
design, the easier it can be routed. Easy routings are more likely to fit the timing
constraints.

— Accept the overclocked X32. The timing estimates are worst case scenarios. When
the X32 is little overclocked (20-22ns longest path), it will most likely work fine.
The design must off-course always used with care, and different chips may produce
different results. 26ns longest paths have still been reported to work correctly on
several FPGAs.

o LCC often gives the “Expression with no effect elided” Warning
This warning is often generated when converting constants, such as (void#*)0. In most
cases, this warning is harmless, but care should be taken when encountering these
warnings.



