
X32 cache memory and SDRAM controller

Mat́ıas Escudero Mart́ınez

April 28, 2010

1 Introduction

This document describes the design and implementation of a memory mod-
ule X32 softcore [1]. The final goal is to have the X32 running on the Trenz
Electronic TE300 board [2]. This board has a Xilinx Spartan3E FPGA
[4][5] connected to a DDR SDRAM chip MT46V32M16 [3] SDRAM memo-
ries are designed for high throughput, but the optimal performance only can
be achieved when transferring big amounts of data. For example, access-
ing only one word takes around 20 cycles, but each extra word only takes
one cycle more. This huge overhead forces to use a cache memory between
the X32 and the SDRAM. This architecture also is more suitable for deal-
ing with the different clock domains that the SDRAM interface requires for
normal operation.

2 Cache organization

The amount of RAM available on the FPGA is 72KByte. Since most of
the programs that are going to be loaded on the X32 are in the range of 10
to 32 KByte, plus the stack and some variables, we have decided to use a
64KByte direct mapped cache.

The value of the block size is coded with generics, so can be change
any time by synthesizing again the softcore. Starting value is 32 words.
That means 128 bytes. Writing or reading 32 words to or from the SDRAM
takes 32 cycles plus the overhead, approximately 18 cycles more. Since the
SDRAM works with 100MHz clock and the X32 with 50MHz clock, a cache
miss is between 25 and 50 cycles (if writing the block back in the SDRAM
is needed), from the microcontroller point of view. This means 1us delay.

Then the number of sets will be:

1



Figure 1: Cache addressing scheme.

Nsets =
cache size

block size
=

216

27
= 29

In order to know which block is loaded in each set of the cache, a Trans-
lation Lookaside Buffer (TLB) is needed. Such TLB has as many positions
as number of sets in the cache. The width of each position is the width of
the tag, that identifies the block, plus the dirty bit, that tells whether the
block loaded in the cache was modified or not.

3 System overview

The X32 is connected to the memory module through the normal X32 mem-
ory bus [1]. The cache controller process the memory request and checks in
the TLB whether the block corresponding to the requested address is loaded
in the cache or not. Most of the times the block will be already on the cache
and the cache controller will read or write the data with the correct align-
ment. The write operations also require to set the dirty bit to 1 in the TLB
address corresponding to the written memory address. If the block is not
in the cache, the cache controller must issue a cache block request to the
sdram controller.

The SDRAM controller module will read in the TLB the dirty bit of
the set corresponding to requested block. If the block that is loaded on
the cache was modified, the SDRAM controller writes the block back to the
memory. After that the SDRAM controller reads the requested block from
the SDRAM memory and loads it on the cache. Finally, the tag of the new
memory address is stored in the TLB.

2



Figure 2: Cache Block Diagram.

4 Cache description

The cache is made out of four BRAMs. Each address of each bram contains
one of the bytes of each word for the corresponding address. Thus, the cache
can handle words of 32 bits while supporting writing masks.

5 Cache controller

The cache controller reads or writes the data in the cache following the
orders from the X32. When the X32 issues a read operations, the address is
stored. Then the cache controller goes to the SET ADDRESS state. There
it enables the cache and sets the address in the cache and puts the set
bits in the address of the TLB. In the next clock cycle the controller goes
to the READ FIRST WORD state and sets the address+1 in the cache
and set bits corresponding to this new address in the TLB. If the tag that
comes out of the TLB corresponds with the tag of the first address, then
the cache request is not issued. If a second word is needed it moves to the
READ SECOND WORD state, that is similar to the previous. In These

3



Figure 3: Read state machine.

states the first word and the second word are stored as input of the memory
decoder module. This module aligns the data and takes care of the size of
the memory operation (1, 2 or 4 bytes) and of the sign.

As seen, the actions of reading from the cache and reading from the
TLB are done in parallel. For writing operations this is not possible, so
those actions will be pipelined. When the X32 issues a write operation,
the address is stored and the controller moves to the next state. In the
ALIGN DATA state, the memory decoder splits the word to be written in
two words if needed. Those words will be written in consecutive memory
addresses. In this state the controller also request the corresponding tag
from the TLB. In the next state the output tag of the TLB is compared
with the tag of the first address. If it is correct, the controller moves to the
next state, where the first word is written in the cache. In this state the tag
of the second memory address is also checked. If it is correct and writing a
second word is needed, the controller moves to the next state, otherwise the
write operation is finished and it goes to IDLE state.

4



Figure 4: Write state machine.

5



6 SDRAM controller

The functionality of the SDRAM controller is quite simple. When a cache
block request is issued, the controller looks at the TLB if the block that
is already loaded was modified. In that case, the controller issues a write
command and writes the first address of the block in the SDRAM interface.
When the SDRAM interface asserts the command ack, the SDRAM con-
troller writes the following addresses of the block, and the data. When it
reaches the end of the block, the SDRAM controller asserts the burst done
for one cycle and waits the command ack signal goes to zero. After that
the controller starts a reading burst, that is the same as the previous one,
but waiting for the data valid signal that comes from the interface. When
this signal is asserted, the controller starts writing the incoming data in the
cache.

The main complexity of this module is due to the different clocks. The
SDRAM interface works on one side with the falling edge of a 100MHz clock
for the commands and the address path. On the other side the data path
works with the rising edge of the same clock shifted 90 degrees. Thus, some
additional registers are needed for adapting this two clocks. For more details
about the SDRAM interface look at [6]

7 Clock and reset implementation

Since the system uses two 100MHz clocks for the SDRAM interface and one
50 MHz clock for the X32 and the peripherals, a Digital Clock Manager
(DCM) is needed for frequency synthesis. The DCM takes the clock signal
coming from the outside of the FPGA (system clock or sys clk) with a
frequency of 100 MHz and generates 3 different clock signals: two 100 MHz
clocks with 0 degrees phase (clk0 ) and 90 degrees phase (clk90 ), and the
50 MHz clock (clk50MHz ). clk0 and clk90 are required for the SDRAM
interface and controller but all the other parts of the system work with
clk50MHz. The DCM locked signal is asserted when the output clocks are
engage with the input clock, both in phase and frequency. When the FPGA
is programmed, this signal is zero and it can be used for system reset. reset
signal is active when the DCM is not locked, and 200us after the DCM locks
the phase. Thus, no hardware reset is available for the user.

6



Figure 5: The SDRAM controller starts writing to SDRAM after the cache
request.

7



Figure 6: End of the writing operation.
8



Figure 7: SDRAM controller starts reading from the SDRAM.
9



Figure 8: End of the reading operation.
10



Figure 9: Clock and reset tree.

11



8 Bootloader

In the previous versions of X32 the bootloader program was stored in a
ROM, that actually was a Block RAM with write port unconnected. For
the new X32 memory system we have decided to do without the ROM and
spend almost all the BRAM blocks in the cache. The bootloader program is
stored in the cache when the FPGA is programmed, but once the bootloader
is modified it will not be possible to retrieve the original code. The only
reliable way to reload the bootloader is by reprogramming the FPGA.

A simple hardware reset would not be a guarantee of relaible behaviour
because the bootloader might be overwrited or corrupted. This is the reason
why this kind of reset is not implemented on TE300 board.

9 Implementation

Device Utilization after Map stage

Number of BUFGMUXs 3 out of 24 12%

Number of DCMs 1 out of 8 12%

Number of MULT18X18SIOs 4 out of 36 11%

Number of RAMB16s 33 out of 36 91%

Number of Slices 3123 out of 14752 21%

Number of SLICEMs 120 out of 7376 1%

Number of LOCed Slices 65 out of 3123 2%

Number of LOCed SLICEMs 43 out of 120 35%

Logic Utilization:

Number of Slice Flip Flops: 2,496 out of 29,504 8%

Number of 4 input LUTs: 4,464 out of 29,504 15%

Logic Distribution:

Number of occupied Slices: 3,123 out of 14,752 21%

Number of Slices containing

only related logic: 3,123 out of 3,123 100%

Number of Slices containing

unrelated logic: 0 out of 3,123 0%

Total Number of 4 input LUTs: 4,818 out of 29,504 16%

Number used as logic: 4,254

Number used as a route-thru: 354

Number used as 16x1 RAMs: 64

12



Number used for Dual Port RAMs: 64

(Two LUTs used per Dual Port RAM)

Number used as Shift registers: 82

Timing results after Place and Route:

Constraint Period Actual Period Timing Errors Paths Analyzed
Requirement Direct Derivative Direct Derivative Direct Derivative

sys clk in 10.000ns 4.800ns 9.988ns 0 0 0 5072657
clk 100MHz 10.000ns 9.918ns N/A 0 0 2809 0
clk 100MHz 90 10.000ns 9.774ns N/A 0 0 1245 0
clk 50MHz 20.000ns 19.975ns N/A 0 0 5068603 0

10 Results

Thanks to this cache most of the times a memory access only takes between
4 or 5 cycles. In comparison, we have achieved an speedup of 5x compared
with the version without cache, and an speedup of 1.6x compared with the
version of the NEXSYS board. The main drawback is that is not possible
to have a bootloader on the FPGA, and the monitor program is now loaded
in the cache. If the monitor is overwritten at any time, the only way to
retrieve it is by reprogramming the FPGA.

References

[1] X32 Design. http://x32.ewi.tudelft.nl/woutersen_thesis.pdf.

[2] TE300 board documents: http://www.trenz-electronic.de/

support/download-area/te0300-spartan-3e-series.html

[3] Micron MT46V32M16 description: http://download.micron.com/

pdf/datasheets/dram/ddr/512MBDDRx4x8x16.pdf

[4] Xilinx Spartan3E datasheet: http://www.xilinx.com/support/

documentation/data_sheets/ds312.pdf

[5] Xilinx Spartan3E user guide: http://www.xilinx.com/support/

documentation/user_guides/ug331.pdf

[6] SDRAM interface generated by MIG 2.3: http://www.xilinx.com/

support/documentation/ip_documentation/ug086.pdf

13

http://x32.ewi.tudelft.nl/woutersen_thesis.pdf
http://www.trenz-electronic.de/support/download-area/te0300-spartan-3e-series.html
http://www.trenz-electronic.de/support/download-area/te0300-spartan-3e-series.html
http://download.micron.com/pdf/datasheets/dram/ddr/512MBDDRx4x8x16.pdf
http://download.micron.com/pdf/datasheets/dram/ddr/512MBDDRx4x8x16.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug086.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug086.pdf

	Introduction
	Cache organization
	System overview
	Cache description
	Cache controller
	SDRAM controller
	Clock and reset implementation
	Bootloader
	Implementation
	Results

