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Abstract

 

In 1960, R.E. Kalman published his famous paper describing a recursive solution 
to the discrete-data linear filtering problem. Since that time, due in large part to ad-
vances in digital computing, the Kalman filter has been the subject of extensive re-
search and application, particularly in the area of autonomous or assisted 
navigation.

The Kalman filter is a set of mathematical equations that provides an efficient com-
putational (recursive) means to estimate the state of a process, in a way that mini-
mizes the mean of the squared error. The filter is very powerful in several aspects: 
it supports estimations of past, present, and even future states, and it can do so even 
when the precise nature of the modeled system is unknown.

The purpose of this paper is to provide a practical introduction to the discrete Kal-
man filter. This introduction includes a description and some discussion of the basic 
discrete Kalman filter, a derivation, description and some discussion of the extend-
ed Kalman filter, and a relatively simple (tangible) example with real numbers & 
results.
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1 The Discrete Kalman Filter

 

In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-
data linear filtering problem [Kalman60]. Since that time, due in large part to advances in digital 
computing, the 

 

Kalman filter

 

 has been the subject of extensive research and application, 
particularly in the area of autonomous or assisted navigation. A very “friendly” introduction to the 
general idea of the Kalman filter can be found in Chapter 1 of [Maybeck79], while a more complete 
introductory discussion can be found in [Sorenson70], which also contains some interesting 
historical narrative. More extensive references include [Gelb74; Grewal93; Maybeck79; Lewis86; 
Brown92; Jacobs93].

 

The Process to be Estimated

 

The Kalman filter addresses the general problem of trying to estimate the state  of a 
discrete-time controlled process that is governed by the linear stochastic difference equation

, (1.1)

with a measurement  that is

. (1.2)

The random variables  and  represent the process and measurement noise (respectively). 
They are assumed to be independent (of each other), white, and with normal probability 
distributions

, (1.3)

. (1.4)

In practice, the 

 

process

 

 

 

noise covariance 

 

 and 

 

measurement noise covariance

 

  matrices might 
change with each time step or measurement, however here we assume they are constant.

The  matrix  in the difference equation (1.1) relates the state at the previous time step  
to the state at the current step , in the absence of either a driving function or process noise. Note 
that in practice  might change with each time step, but here we assume it is constant. The  
matrix 

 

B

 

 relates the optional control input  to the state 

 

x

 

. The  matrix  in the 
measurement equation (1.2) relates the state to the measurement 

 

z

 

k

 

. In practice  might change 
with each time step or measurement, but here we assume it is constant.

 

The Computational Origins of the Filter

 

We define  (note the “super minus”) to be our 

 

a priori

 

 state estimate at step 

 

k

 

 given 
knowledge of the process prior to step 

 

k

 

, and  to be our 

 

a posteriori

 

 state estimate at step 

 

k

 

 given measurement . We can then define 

 

a priori

 

 and 

 

a posteriori

 

 estimate errors as
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The 

 

a priori

 

 estimate error covariance is then

, (1.5)

and the 

 

a posteriori

 

 estimate error covariance is

. (1.6)

In deriving the equations for the Kalman filter, we begin with the goal of finding an equation that 
computes an 

 

a posteriori

 

 state estimate  as a linear combination of an 

 

a priori

 

 estimate  and 
a weighted difference between an actual measurement  and a measurement prediction  as 
shown below in (1.7). Some justification for (1.7) is given in “The Probabilistic Origins of the 
Filter” found below.

(1.7)

The difference  in (1.7) is called the measurement 

 

innovation

 

, or the 

 

residual

 

. The 
residual reflects the discrepancy between the predicted measurement  and the actual 
measurement . A residual of zero means that the two are in complete agreement. 

The  matrix 

 

K

 

 in (1.7) is chosen to be the 

 

gain

 

 or 

 

blending factor

 

 that minimizes the 

 

a 
posteriori

 

 error covariance (1.6). This minimization can be accomplished by first substituting (1.7) 
into the above definition for , substituting that into (1.6), performing the indicated expectations, 
taking the derivative of the trace of the result with respect to 

 

K

 

, setting that result equal to zero, and 
then solving for 

 

K

 

. For more details see [Maybeck79; Brown92; Jacobs93]. One form of the 
resulting 

 

K

 

 that minimizes (1.6) is given by

 

1

 

. (1.8)

Looking at (1.8) we see that as the measurement error covariance  approaches zero, the gain 

 

K

 

 
weights the residual more heavily. Specifically,

.

On the other hand, as the 

 

a priori

 

 estimate error covariance  approaches zero, the gain 

 

K

 

 weights 
the residual less heavily. Specifically,

.

 

1. 

 

All of the Kalman filter equations can be algebraically manipulated into to several forms. Equation (1.8)
represents the Kalman gain in one popular form.
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Another way of thinking about the weighting by K is that as the measurement error covariance  
approaches zero, the actual measurement  is “trusted” more and more, while the predicted 
measurement  is trusted less and less. On the other hand, as the a priori estimate error 
covariance  approaches zero the actual measurement  is trusted less and less, while the 
predicted measurement  is trusted more and more.

The Probabilistic Origins of the Filter

The justification for (1.7) is rooted in the probability of the a priori estimate  conditioned on all 
prior measurements  (Bayes’ rule). For now let it suffice to point out that the Kalman filter 
maintains the first two moments of the state distribution,

The a posteriori state estimate (1.7) reflects the mean (the first moment) of the state distribution— 
it is normally distributed if the conditions of (1.3) and (1.4) are met. The a posteriori estimate error 
covariance (1.6) reflects the variance of the state distribution (the second non-central moment). In 
other words,

.

For more details on the probabilistic origins of the Kalman filter, see [Maybeck79; Brown92; 
Jacobs93].

The Discrete Kalman Filter Algorithm

We will begin this section with a broad overview, covering the “high-level” operation of one form 
of the discrete Kalman filter (see the previous footnote). After presenting this high-level view, we 
will narrow the focus to the specific equations and their use in this version of the filter.

The Kalman filter estimates a process by using a form of feedback control: the filter estimates the 
process state at some time and then obtains feedback in the form of (noisy) measurements. As such, 
the equations for the Kalman filter fall into two groups: time update equations and measurement 
update equations. The time update equations are responsible for projecting forward (in time) the 
current state and error covariance estimates to obtain the a priori estimates for the next time step. 
The measurement update equations are responsible for the feedback—i.e. for incorporating a new 
measurement into the a priori estimate to obtain an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the measurement 
update equations can be thought of as corrector equations. Indeed the final estimation algorithm 
resembles that of a predictor-corrector algorithm for solving numerical problems as shown below 
in Figure 1-1.

R
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Figure 1-1. The ongoing discrete Kalman filter cycle. The time update 
projects the current state estimate ahead in time. The measurement update 
adjusts the projected estimate by an actual measurement at that time.

The specific equations for the time and measurement updates are presented below in Table 1-1 and 
Table 1-2.

Again notice how the time update equations in Table 1-1 project the state and covariance estimates 
forward from time step  to step .  and B are from (1.1), while  is from (1.3). Initial 
conditions for the filter are discussed in the earlier references.

The first task during the measurement update is to compute the Kalman gain, . Notice that the 
equation given here as (1.11) is the same as (1.8). The next step is to actually measure the process 
to obtain , and then to generate an a posteriori state estimate by incorporating the measurement 
as in (1.12). Again (1.12) is simply (1.7) repeated here for completeness. The final step is to obtain 
an a posteriori error covariance estimate via (1.13).

After each time and measurement update pair, the process is repeated with the previous a posteriori 
estimates used to project or predict the new a priori estimates. This recursive nature is one of the 
very appealing features of the Kalman filter—it makes practical implementations much more 
feasible than (for example) an implementation of a Wiener filter [Brown92] which is designed to 
operate on all of the data directly for each estimate. The Kalman filter instead recursively 
conditions the current estimate on all of the past measurements. Figure 1-2 below offers a complete 
picture of the operation of the filter, combining the high-level diagram of Figure 1-1 with the 
equations from Table 1-1 and Table 1-2.

Table 1-1: Discrete Kalman filter time update equations.

(1.9)

(1.10)

Table 1-2: Discrete Kalman filter measurement update equations.

(1.11)

(1.12)

(1.13)

Time Update
(“Predict”)

Measurement Update
(“Correct”)

x̂k
- Ax̂k 1– Buk 1–+=

Pk
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k 1– k A Q

Kk Pk
- HT HPk
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x̂k x̂k
- Kk zk H x̂k

-–( )+=

Pk I KkH–( )Pk
-=

Kk
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Filter Parameters and Tuning

In the actual implementation of the filter, the measurement noise covariance  is usually measured 
prior to operation of the filter. Measuring the measurement error covariance  is generally 
practical (possible) because we need to be able to measure the process anyway (while operating the 
filter) so we should generally be able to take some off-line sample measurements in order to 
determine the variance of the measurement noise.

The determination of the process noise covariance  is generally more difficult as we typically do 
not have the ability to directly observe the process we are estimating. Sometimes a relatively 
simple (poor) process model can produce acceptable results if one “injects” enough uncertainty 
into the process via the selection of . Certainly in this case one would hope that the process 
measurements are reliable.

In either case, whether or not we have a rational basis for choosing the parameters, often times 
superior filter performance (statistically speaking) can be obtained by tuning the filter parameters 

 and . The tuning is usually performed off-line, frequently with the help of another (distinct) 
Kalman filter in a process generally referred to as system identification.

Figure 1-2. A complete picture of the operation of the Kalman filter, com-
bining the high-level diagram of Figure 1-1 with the equations from 
Table 1-1 and Table 1-2.

In closing we note that under conditions where  and .are in fact constant, both the estimation 
error covariance  and the Kalman gain  will stabilize quickly and then remain constant (see 
the filter update equations in Figure 1-2). If this is the case, these parameters can be pre-computed 
by either running the filter off-line, or for example by determining the steady-state value of  as 
described in [Grewal93].
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It is frequently the case however that the measurement error (in particular) does not remain 
constant. For example, when sighting beacons in our optoelectronic tracker ceiling panels, the 
noise in measurements of nearby beacons will be smaller than that in far-away beacons. Also, the 
process noise  is sometimes changed dynamically during filter operation—becoming —in 
order to adjust to different dynamics. For example, in the case of tracking the head of a user of a 
3D virtual environment we might reduce the magnitude of  if the user seems to be moving 
slowly, and increase the magnitude if the dynamics start changing rapidly. In such cases  might 
be chosen to account for both uncertainty about the user’s intentions and uncertainty in the model.

2 The Extended Kalman Filter (EKF)

The Process to be Estimated

As described above in section 1, the Kalman filter addresses the general problem of trying to 
estimate the state  of a discrete-time controlled process that is governed by a linear 
stochastic difference equation. But what happens if the process to be estimated and (or) the 
measurement relationship to the process is non-linear? Some of the most interesting and successful 
applications of Kalman filtering have been such situations. A Kalman filter that linearizes about 
the current mean and covariance is referred to as an extended Kalman filter or EKF.

In something akin to a Taylor series, we can linearize the estimation around the current estimate 
using the partial derivatives of the process and measurement functions to compute estimates even 
in the face of non-linear relationships. To do so, we must begin by modifying some of the material 
presented in section 1. Let us assume that our process again has a state vector , but that the 
process is now governed by the non-linear stochastic difference equation

, (2.1)

with a measurement  that is

, (2.2)

where the random variables  and  again represent the process and measurement noise as in 
(1.3) and (1.4). In this case the non-linear function  in the difference equation (2.1) relates the 
state at the previous time step  to the state at the current time step . It includes as parameters 
any driving function  and the zero-mean process noise wk. The non-linear function  in the 
measurement equation (2.2) relates the state  to the measurement .

In practice of course one does not know the individual values of the noise  and  at each time 
step. However, one can approximate the state and measurement vector without them as

(2.3)

and

, (2.4)

where  is some a posteriori estimate of the state (from a previous time step k).

Q Qk

Qk
Qk
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It is important to note that a fundamental flaw of the EKF is that the distributions (or densities in 
the continuous case) of the various random variables are no longer normal after undergoing their 
respective nonlinear transformations. The EKF is simply an ad hoc state estimator that only 
approximates the optimality of Bayes’ rule by linearization. Some interesting work has been done 
by Julier et al. in developing a variation to the EKF, using methods that preserve the normal 
distributions throughout the non-linear transformations [Julier96].

The Computational Origins of the Filter

To estimate a process with non-linear difference and measurement relationships, we begin by 
writing new governing equations that linearize an estimate about (2.3) and (2.4),

, (2.5)

. (2.6)

where
•  and  are the actual state and measurement vectors,
•  and  are the approximate state and measurement vectors from (2.3) and (2.4),
•  is an a posteriori estimate of the state at step k,
• the random variables  and  represent the process and measurement noise as in 

(1.3) and (1.4). 
• A is the Jacobian matrix of partial derivatives of  with respect to x, that is

,

• W is the Jacobian matrix of partial derivatives of  with respect to w,

,

• H is the Jacobian matrix of partial derivatives of  with respect to x,

,

• V is the Jacobian matrix of partial derivatives of  with respect to v,

.

Note that for simplicity in the notation we do not use the time step subscript  with the Jacobians 
, , , and , even though they are in fact different at each time step.
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Now we define a new notation for the prediction error,

, (2.7)

and the measurement residual,

. (2.8)

Remember that in practice one does not have access to  in (2.7), it is the actual state vector, i.e. 
the quantity one is trying to estimate. On the other hand, one does have access to  in (2.8), it is 
the actual measurement that one is using to estimate . Using (2.7) and (2.8) we can write 
governing equations for an error process as

, (2.9)

, (2.10)

where  and  represent new independent random variables having zero mean and covariance 
matrices  and , with  and  as in (1.3) and (1.4) respectively.

Notice that the equations (2.9) and (2.10) are linear, and that they closely resemble the difference 
and measurement equations (1.1) and (1.2) from the discrete Kalman filter. This motivates us to 
use the actual measurement residual  in (2.8) and a second (hypothetical) Kalman filter to 
estimate the prediction error  given by (2.9). This estimate, call it , could then be used along 
with (2.7) to obtain the a posteriori state estimates for the original non-linear process as

. (2.11)

The random variables of (2.9) and (2.10) have approximately the following probability 
distributions (see the previous footnote):

Given these approximations and letting the predicted value of  be zero, the Kalman filter 
equation used to estimate  is

. (2.12)

By substituting (2.12) back into (2.11) and making use of (2.8) we see that we do not actually need 
the second (hypothetical) Kalman filter:

(2.13)

Equation (2.13) can now be used for the measurement update in the extended Kalman filter, with 
 and  coming from (2.3) and (2.4), and the Kalman gain  coming from (1.11) with the 

appropriate substitution for the measurement error covariance.
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ẽzkẽxk
êk
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The complete set of EKF equations is shown below in Table 2-1 and Table 2-2. Note that we have 
substituted  for  to remain consistent with the earlier “super minus” a priori notation, and that 
we now attach the subscript  to the Jacobians , , , and , to reinforce the notion that they 
are different at (and therefore must be recomputed at) each time step. 

As with the basic discrete Kalman filter, the time update equations in Table 2-1 project the state 
and covariance estimates from the previous time step  to the current time step . Again  in 
(2.14) comes from (2.3),  and  are the process Jacobians at step k, and  is the process 
noise covariance (1.3) at step k.

As with the basic discrete Kalman filter, the measurement update equations in Table 2-2 correct 
the state and covariance estimates with the measurement . Again  in (2.17) comes from (2.4), 

 and V are the measurement Jacobians at step k, and  is the measurement noise covariance 
(1.4) at step k. (Note we now subscript  allowing it to change with each measurement.)

The basic operation of the EKF is the same as the linear discrete Kalman filter as shown in 
Figure 1-1. Figure 2-1 below offers a complete picture of the operation of the EKF, combining the 
high-level diagram of Figure 1-1 with the equations from Table 2-1 and Table 2-2.

Table 2-1: EKF time update equations.

(2.14)

(2.15)

Table 2-2: EKF measurement update equations.
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Figure 2-1. A complete picture of the operation of the extended Kalman fil-
ter, combining the high-level diagram of Figure 1-1 with the equations from 
Table 2-1 and Table 2-2.

An important feature of the EKF is that the Jacobian  in the equation for the Kalman gain  
serves to correctly propagate or “magnify” only the relevant component of the measurement 
information. For example, if there is not a one-to-one mapping between the measurement  and 
the state via , the Jacobian  affects the Kalman gain so that it only magnifies the portion of 
the residual  that does affect the state. Of course if over all measurements there is not 
a one-to-one mapping between the measurement  and the state via , then as you might expect 
the filter will quickly diverge. In this case the process is unobservable.

3 A Kalman Filter in Action: Estimating a Random Constant

In the previous two sections we presented the basic form for the discrete Kalman filter, and the 
extended Kalman filter. To help in developing a better feel for the operation and capability of the 
filter, we present a very simple example here. Andrew Straw has made available a Python/SciPy 
implementation of this example at http://www.scipy.org/Cookbook/KalmanFiltering (valid 
link as of July 24, 2006).

The Process Model

In this simple example let us attempt to estimate a scalar random constant, a voltage for example. 
Let’s assume that we have the ability to take measurements of the constant, but that the 
measurements are corrupted by a 0.1 volt RMS white measurement noise (e.g. our analog to digital 
converter is not very accurate). In this example, our process is governed by the linear difference 
equation

,
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with a measurement  that is

.

The state does not change from step to step so . There is no control input so . Our 
noisy measurement is of the state directly so . (Notice that we dropped the subscript k in 
several places because the respective parameters remain constant in our simple model.)

The Filter Equations and Parameters

Our time update equations are

,

,

and our measurement update equations are

, (3.1)

,

.

Presuming a very small process variance, we let . (We could certainly let  but 
assuming a small but non-zero value gives us more flexibility in “tuning” the filter as we will 
demonstrate below.) Let’s assume that from experience we know that the true value of the random 
constant has a standard normal probability distribution, so we will “seed” our filter with the guess 
that the constant is 0. In other words, before starting we let .

Similarly we need to choose an initial value for , call it . If we were absolutely certain that 
our initial state estimate  was correct, we would let . However given the 
uncertainty in our initial estimate , choosing  would cause the filter to initially and 
always believe . As it turns out, the alternative choice is not critical. We could choose 
almost any  and the filter would eventually converge. We’ll start our filter with . 
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The Simulations

To begin with, we randomly chose a scalar constant  (there is no “hat” on the x 
because it represents the “truth”). We then simulated 50 distinct measurements  that had error 
normally distributed around zero with a standard deviation of 0.1 (remember we presumed that the 
measurements are corrupted by a 0.1 volt RMS white measurement noise). We could have 
generated the individual measurements within the filter loop, but pre-generating the set of 50 
measurements allowed me to run several simulations with the same exact measurements (i.e. same 
measurement noise) so that comparisons between simulations with different parameters would be 
more meaningful.

In the first simulation we fixed the measurement variance at . Because this is 
the “true” measurement error variance, we would expect the “best” performance in terms of 
balancing responsiveness and estimate variance. This will become more evident in the second and 
third simulation. Figure 3-1 depicts the results of this first simulation. The true value of the random 
constant  is given by the solid line, the noisy measurements by the cross marks, and 
the filter estimate by the remaining curve.

Figure 3-1. The first simulation: . The true value of the 
random constant  is given by the solid line, the noisy mea-
surements by the cross marks, and the filter estimate by the remaining curve.

When considering the choice for  above, we mentioned that the choice was not critical as long 
as  because the filter would eventually converge. Below in Figure 3-2 we have plotted the 
value of  versus the iteration. By the 50th iteration, it has settled from the initial (rough) choice 
of 1 to approximately 0.0002 (Volts2).
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Figure 3-2. After 50 iterations, our initial (rough) error covariance  
choice of 1 has settled to about 0.0002 (Volts2).

In section 1 under the topic “Filter Parameters and Tuning” we briefly discussed changing or 
“tuning” the parameters Q and R to obtain different filter performance. In Figure 3-3 and Figure 3-
4 below we can see what happens when R is increased or decreased by a factor of 100 respectively. 
In Figure 3-3 the filter was told that the measurement variance was 100 times greater (i.e. ) 
so it was “slower” to believe the measurements.

Figure 3-3. Second simulation: . The filter is slower to respond to 
the measurements, resulting in reduced estimate variance.

In Figure 3-4 the filter was told that the measurement variance was 100 times smaller (i.e. 
) so it was very “quick” to believe the noisy measurements.
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Figure 3-4. Third simulation: . The filter responds to measure-
ments quickly, increasing the estimate variance.

While the estimation of a constant is relatively straight-forward, it clearly demonstrates the 
workings of the Kalman filter. In Figure 3-3 in particular the Kalman “filtering” is evident as the 
estimate appears considerably smoother than the noisy measurements.
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