
Floating-Point Support for Embedded FPGA
Platform with 6502 Soft-Processor

Sait Izmit
Delft Center for Systems and Control

Delft University of Technology
sizmit@control-lab.dcsc.tudelft.nl

Abstract— This paper presents a framework for the porting
of the SoftFloat floating-point implementation package to an
FPGA with 6502 soft core and evaluates the performance of
the package on this platform by testing a 2nd order Butterworth
Low Pass Filter. Within the framework, 8051, PIC and FPGA
architectures are explained and the three platforms are compared
for control applications in order to explain why FPGA with
soft core is chosen as a platform. The IEEE 754 - Standard for
Binary Floating-Point Arithmetic is explained for Single Precision
Floating-Point Format in order to give the reader an insight in the
representation of floating-point numbers, special values, floating-
point arithmetic, rounding modes and exceptions. The porting
details and execution times for available floating-point functions
are presented. To evaluate the performance of the package, an
experiment is carried out using a 2nd order Butterworth Low
Pass Filter. The design of the Butterworth Low Pass Filter
and its implementation in microcontrollers using direct form
realization is presented. Fixed-point arithmetic is introduced and
a methodology is presented for the choice of the number of integer
and fraction bits. The effects of truncation and filter coefficient
perturbation on the filter properties are discussed in detail.

I. INTRODUCTION

8051s, PICs and FPGAs are widely used embedded platforms
for control applications. While 8051s and PICs introduce fast
and cheap control solutions, they are limited by supplier-
defined functionalities such as the integer size and the number
of interrupts. On the other hand, FPGAs with soft-processors
introduce more flexible microcontroller architectures. It
is possible to add user-defined functionalities to FPGAs
with soft-processors depending on the specifications of the
application. Due to its flexible architecture, FPGA with 8 bit
core 6502 soft-processor is chosen as platform to evaluate
floating-point support.

Floating-point computations are more convenient in scientific
and engineering applications. Even though floating-point
arithmetic is slower compared to integer arithmetic, floating-
points can represent a greater range compared to integers,
which help dealing with overflow problems. With their
changing precision throughout their range and the rounding
modes that are used in the arithmetic operations, sometimes
floating-points can introduce higher computational precision .
That is why floating-points are studied on FPGA with 6502
soft-processor in this paper.

This paper is written for the in4073 - Real-Time Embedded

Systems course in Delft University of Technology and the
porting of SoftFloat floating-point package to FPGA with
6502 soft-processor is discussed in detail. A case study is also
carried out both to test the performance of the floating-point
package and also to show the implementation of digital filters
in microcontrollers using fixed-point arithmetic.

This paper is organized as follows, Section 2 compares 8051s,
PICs and FPGAs for control applications. Section 3 explains
IEEE 754 - Standard for Binary Floating-Point Arithmetic
for Single Precision Floating-Point Format. Section 4 explains
the structure of the SoftFloat Floating-Point Implementation
Package, porting details for FPGA with 6502 soft-processor
and available floating-point functions. In Section 5, a case
study is explained in detail for the comparison of integer
and floating-point calculations on the FPGA platform using
a 2nd order Butterworth Low Pass (BLP) Filter. Conclusions
are drawn in Section 6.

II. 8051, PIC AND FPGA PLATFORMS

In this section, the advantages and disadvantages of three
different 8 bit microcontrollers for control applications are
discussed.

A. 8051 Microcontrollers

The 8051 family consists of 8 bit Harvard architecture
microcontrollers, which were first developed by Intel in 1980
[4]. They became very popular in the 1980s and the early
1990s for control applications.

One of the most important advantages of the 8051 is
its Boolean processor [4]. This means that the instruction set
of the microcontroller is specialized in dealing with binary
inputs and outputs. This makes the 8051s suitable for control
applications.

The second advantage of the 8051 microcontroller is its
speed. According to [4], most available versions use oscillator
frequencies varying between 3.5 and 33 MHz. However,
each machine cycle is also divided into 12 oscillator periods.
8051s are Complex Instruction Set Computers (CISC), which
execute microcodes as their instructions. Microcodes can be
regarded as small programs, which perform series of actions.
Therefore, by dividing the machine clock into oscillator

periods, the 8051s can execute instructions in one or more
machine cycles. [4] also states that the 8051 has four separate
register sets. When an interrupt occurs, the microcontroller
does not need to store the register contents in the stack.
Only the program counter is stored. This property greatly
reduces the interrupt latency, resulting in a faster performance.

The 8051 microcontrollers are available for different
prices with different features. The designer can choose among
different 8051 versions for the necessary features depending
on the complexity of the application. Today, enhanced 16
bit 8051 versions with A/D converters, PWM and I2C
capabilities are available in the market.

As most of the 8 bit microcontrollers, 8051s are poor
in implementing complex designs that require high sampling
frequencies and complex computations. 8051s may fail
performing the required tasks when sampling frequency
increases or the software implementation of the task becomes
too complex.

The 8 bit integer size of 8051s can introduce limitations on
the system. First of all, overflows and underflows can easily
occur in the computations. Second, in many applications,
the precision introduced by 8 bit integers is not enough for
good computational performance. The 8051 microcontrollers
do have the floating-point support but it is not implemented
in the hardware. The floating-point functions are available as
software macros, which result in poor performance. This is
a common problem with most of the 8 bit microcontrollers.
Therefore, it is not feasible to use 8051s for applications that
require a lot of floating-point computations.

As a conclusion, the 8051 microcontrollers were very
popular in 1980s for control applications due to their
optimized instruction sets in one-bit operations, their fast
performances and their low-costs. However, the 8051s are
limited in handling complex designs and high precision
computations, which does not make them very suitable for
every control application.

B. PIC Microcontrollers

Compared to the 8051 microcontrollers, which contain
Boolean processors, PICs are 8-16 bit Harvard Architecture
RISC microcontrollers [5]. RISC stands for Reduced
Instruction Set Computer. According to [6], with RISC
approach, less number of instructions with simpler formats
and fixed lengths are available that permit fast hardwired
decoding. This simplifies the instruction pipelining in the
microcontroller, reducing the execution times of all the
instructions in average to one clock cycle. Compared to the
8051s, which usually have around 111 complex instructions
[4], the PICs support only 35 simple RISC instructions [5].
The disadvantage of the RISC approach is that less number of
simpler instructions result in longer programs [6]. However,
since most of the instructions are register-based, access to

main memory is also reduced, increasing the speed of the
microcontroller [6].

Just like the 8051 microcontrollers, it is possible to find wide
variety of PICs for different prices with different features on
the market. However, more advanced features are available
for the PIC microcontrollers compared to 8051s. Today, some
models include LCD drivers, peripherals for I2C, SPI, IS2
and motor control, and support for USB, Ethernet, CAN,
LIN and IRDA. These futures make PIC microcontrollers
highly suitable for real-time control applications. However,
just like the 8051s, PICs are limited in implementing complex
designs. Their 8 bit integer size introduces the same problem
with 8051s in high precision computations. It is possible to
find software floating-point macros for PIC microcontrollers,
which are poor in performance.

As a conclusion, just like 8051s, PICs are general purpose
microcontrollers with a different architecture. They introduce
fast and low-cost real-time control problem solutions.
However, they are not suitable for every control application
just like the 8051 microcontrollers due to their drawbacks in
handling complex designs and high precision computations.

C. Field Programmable Gate Arrays

A Field Programmable Gate Array, FPGA, has its roots from
the Complex Programmable Logic Device, CPLD, of the mid
1980s. According to [8], an FPGA is a semiconductor device
composed of logic components connected with programmable
interconnections, which allow the users to implement multi-
level logic.

FPGAs introduce a very different approach in designing
systems compared to general purpose integrated circuits like
8051s and PICs. As [7] points out, standard part solutions
like 8051s and PICs, deliver supplier-defined functionality at
low cost. On the other hand, application specific integrated
circuits (ASICs) deliver user-defined functionality at high
cost. FPGAs combine the advantages of the both approaches
and deliver user-defined functionality at low cost.

According to [8], the programming circuitry of FPGA slows
down the connection paths, resulting in a slower system
performance compared to ASICs. Even though FPGAs are
cheaper then ASICs, they are still expensive compared to
solutions like 8051s and PICs.

It is possible to use FPGAs for control applications in
two ways. The first one is to implement the control algorithm
using a Hardware Description Language. This approach
results in even faster performance compared to 8051 and PIC
microcontrollers.

The second approach, which is the focus of this paper,
is using a soft-processor implemented by a Hardware
Description Language to transform the FPGA platform

into a microcontroller. Then the designer can use this
microcontroller to implement control algorithms. This
approach has both advantages and disadvantages. An FPGA
with soft-processor has slower performance, consumes more
energy and introduces higher-cost solutions compared to 8051
and PIC microcontrollers.

Despite its disadvantages, FPGA with soft-processor
introduces a more flexible microcontroller architecture.
The functionalities of the microcontroller are not supplier
defined as it is in the 8051s and PICs, instead they are
design parameters to be defined by the user. Depending on
the features of the soft-processor more complex designs
can be handled by the FPGA compared to 8051 and
PIC microcontrollers. Another important advantage is that
computations with greater range and higher precision can
be executed since integer size is a design parameter for
the soft-processor. Just like 8051s and PICs, floating-point
support in software can also be introduced to the system, as
it is explained in Section 4. However, different than most of
the 8 bit microcontrollers, the floating-point support can also
be implemented in VHDL as a part of the soft-processor.
Such an implementation can result in better floating-point
performance compared to 8051s and PICs.

As a conclusion, 8051 and PIC microcontrollers are
only suitable for simpler control applications due to their
limitations on handling complex designs and executing
high precision computations. An FPGA with soft-processor
introduces a more flexible microcontroller architecture and
enables more complex applications that require higher
computational precision. However, FPGA platform introduces
a slower performance and a more expensive solution compared
to 8051s and PICs.

III. FLOATING-POINT NUMBERS

In this section, the Single Precision Floating-Point Format is
explained according to the IEEE 754 - Standard for Binary
Floating-Point Arithmetic.

A. Floating-Point Representation

According to [2], floating-Points are divided into two: the
basic format and the extended format. The basic format
consists of the single precision format, which is represented
with 32 bits and the double precision format, which is
represented with 64 bits. Only the single precision floating-
point format is discussed in this paper.

The basic representation of numbers in computer based
systems is the integer representation. When a 32 bit 2’s
complement integer is concerned, the MSB is used for the
representation of the sign and the remaining 31 bits are used
for the representation of the magnitude. Therefore the integer
has a range from −2, 147, 483, 648 to +2, 147, 483, 647.
Furthermore, the integer representation has a fixed precision

through out its range.

In some applications, 32 bit integers may result in overflows
and underflows. Sometimes the precision is not enough
to give good computational results. For example, in some
digital filtering applications, if the filter coefficients can
not be represented with enough precision, the filter may
become unstable. Floating-points introduce a greater range
with the same number of bits used to represent the numbers.
Further, the precision of the floating-point numbers change
throughout its range. Therefore, depending on the application,
floating-points are used to overcome the range problem of
the integers and sometimes they introduce higher precision.

As [5] states, basically a floating-point number is represented
according to,

n = be ×m (1)

where e is the exponent, m is the mantissa or the significant
and b is the base number or the radix. According to [9], on
the computer level, the single precision floating-point number
consists of a 32 bits representation. Bits 0 - 22 are used to
represent the mantissa or the significant, bits 23 - 30 are used
to represent the exponent and the bit 31 is used to represent
the sign of the floating-point number.

The floating-point representation increases the range of the
number dramatically compared to the integer representation.
Further, the precision is not fixed throughout the range
anymore. Instead, the floating-point numbers are very close
to each other around zero and the precision decreases as the
numbers get further away from the origin.

There are two types of floating point representations:
the normalized floating-points and the denormalized floating-
points. According to [9], they are represented using the sign
s, which is equal to zero for positive numbers and equal to
one for negative numbers, the fraction f , which is equal to

f = (b−1
22 + b−2

21 + ... + b−23
0), (2)

and the unbiased exponent e, which is equal to

e = E − 127, (3)

where E is the biased exponent. While Emax = 255 is
reserved to represent special values ±∞ and NaN , Emin = 0
is reserved to represent ±0 and denormalized floating-point
numbers. Further, the unbiased exponent e is defined in order
to make negative exponents possible without using a sign bit
for the exponent. [9] represents the normalized floating-points
and the denormalized floating-points according to,

Normalized:
(−1)s2e × 1.f (4)

Denormalized:
(−1)s2−126 × 0.f (5)

Denormalized floating-points are used to represent numbers
very close to zero when gradual underflow occurs. Denormal-
ized floating-points and gradual underflow are discussed in
Section III-E.

B. Range, Overflow and Underflow

It is very easy to compute the range for different representa-
tions using Equations 4 and 5 from the previous section. The
results can be observed in Table I.

TABLE I
RANGES OF DIFFERENT REPRESENTATIONS

Representation Range
Normalized FP ±2−126 to ±(2− 2−23)2127

Denormalized FP ±2−149 to ±(2− 2−23)2−126

Integer −231 to 231 − 1

Combining the normalized and the denormalized floating-point
numbers one can come up with the specifications in Table II
for IEEE 754 Single Precision Floating-Point Numbers.

TABLE II
FLOATING POINT SPECIFICATIONS

Effective Range ±(2− 2−23)2127

Negative Overflow n < −(2− 2−23)2127

Negative Underflow n > −2−149

Positive Underflow n < −2−149

Positive Overflow n > (2− 2−23)2127

C. Rounding Modes

There are four rounding modes that are specified in IEEE
754. Some guarding bits are used in arithmetic operations in
order to make rounding possible.

The first method is Round to Nearest Even. It is also
the default rounding method that is used in IEEE 754. As
[2] explains, with this method the number is rounded to the
nearest value. If the number is exactly in the middle then it is
rounded to the nearest even value. For example, the number
3.4 will be rounded to 3 and the number 4.8 will be rounded
to 5. However number 3.5 will be rounded to 4 and 2.5 will
be rounded to 2.

The second method is Round to Zero. Actually no rounding
is made with this method. The excess bits are truncated to
produce the result [2]. For example the numbers 3.1, 3.5 and
3.8 are all rounded to 3.

The third method is Round-Up. With this method the
number is rounded to +∞ [2]. For example, 3.1 becomes 4
and −3.1 becomes −3.

The last method is Round-Down. It is the opposite of
the previous method. With this method the number is rounded
to −∞ [2]. For example, 3.1 becomes 3 and −3.1 becomes
−4.

D. Exceptions

According to [2], there are five exceptions that are specified
in IEEE 754. The first one is the Invalid Operation Exception.
When an invalid operation such as zero divided by zero or
square root of a negative number is executed then the result
is not-a-number, NaN . When the result of an operation is
NaN , the Invalid Operation Exception is generated.

The infinity result can be generated in two ways. It can be
either generated as a result of one of the arithmetic operations
in which the result overflows or it can be generated when a
nonzero number is divided by zero [2]. To differentiate the
two cases, Numerical Overflow Exception and Divide-by-Zero
Exception are defined.

Due to the restrictions on the exponent and the precision,
the results sometimes may become inexact. In such cases,
the Inexact Result Exception is generated. The Numerical
Underflow Exception is also defined in IEEE 754 in order to
be generated when underflow occurs.

E. Gradual Underflow and Denormalized Floating-Point
Numbers

Gradual underflow occurs when the number becomes very
small such that it can not be represented by the exponent
anymore. In such cases, denormalized floating-point numbers
are used to represent the gradually underflowed numbers
[2]. The minimum value for the exponent is −126 but
with denormalized floating-point numbers, it is possible
to represent numbers with exponents up to −149. This is
done by introducing leading zeros to the significant until the
minimum exponent, −126, is reached [2]. An example is
given in Table III.

The introduction of leading zeros result in loss of precision.
In the worst case, all the bits are shifted by leading zeros,
resulting in zero result. Since there are both positive and
negative zeros that are defined in floating-point representation,
the sign of zero shows the side that underflow occurs.

TABLE III
GRADUAL UNDERFLOW EXAMPLE

Sign Exponent Significant
0 −128 1.011000...0
0 −127 0.101100...0
0 −126 0.010110...0

IV. SOFTFLOAT PACKAGE

SoftFloat Floating-Point implementation Package is ported
to FPGA with 6502 soft-processor, which has an 8 bit
core, for floating-point support for the system. SoftFloat
package includes two different source codes in it: one for
floating-point implementation using 32 bits integers and
one for floating-point implementation using 64 bits integers.
Since in 6502 soft-processor only 32 bits long integers are

supported, the parts of the source code for 64 bits integers are
taken out. The top most two directories of the source code
are softfloat and processors. The softfloat directory contains
the most of the source code while the processors directory
includes target specific header files that are not specific to
SoftFloat. For the ported version of the code for 6502, the
two directories are merged and all the files are present in one
directory.

There are six files included in the SoftFloat source code:
• 6502.h - It is a target specific file that defines different

integer sizes and also some target specific C preprocessor
macros.

• softfloat.h - It is a target specific file that defines the
membership functions of the class that are accessible by
the programmer.

• milieu.h - It a target specific file that includes the neces-
sary declarations to compile SoftFloat.

• softfloat-specialize - It is a target specific file that includes
exception handlings and some internal routines for the
source code.

• softfloat-macros - It is a target independent file that
includes some arithmetic functions that are used in some
internal routines.

• softfloat.c - It is a target independent file that includes
the body of the SoftFloat source code.

Some membership functions in the source code are taken out
while porting the code to 6502 in order to form a compact
version of the SoftFloat floating-point implementation with
just the necessary functions. The porting details and the
necessary bug fixes can be found in Appendices A and B.
The ported version of the code includes two conversion
functions, five arithmetic operation functions, one remainder
function and six comparison functions. The complete list of
the functions is as follows:

Conversion Functions:
• int32 to float32 - Integer to floating-point conversion.
• float32 to int32 - Floating-Point to integer conversion.

Arithmetic Functions:
• float32 add - Addition operation.
• float32 sub - Subtraction operation.
• float32 mul - Multiplication operation.
• float32 div - Division operation.
• float32 sqrt - Square root operation.

Remainder Function:
• float32 rem - Remainder operation.

Comparison Functions:
• float32 eq - Equal to comparison.
• float32 le - Less than or equal to comparison.
• float32 lt - Less than comparison.

• float32 eq signaling - Equal to comparison in which
invalid exception is raised for any NaN input.

• float32 le quie -]Less than or equal to comparison in
which invalid exception is not raised for quiet NaN
input.

• float32 lt quiet - Less than comparison in which invalid
exception is not raised for quiet NaN input.

TABLE IV
ARITHMETIC OPERATION EXECUTION TIMES

Integer (msec) FP (msec) tint/tF P
+ 0.02 0.35− 0.44 1/20
− 0.02 0.40− 0.48 1/22
× 0.07 0.68 1/9.7
÷ 0.1 1 1/10

Timing tests are also performed to observe the performance of
the SoftFloat package. The execution times for the four arith-
metic operations and their comparisons with the corresponding
integer operations are presented in Table IV.

TABLE V
EXECUTION TIMES FOR FLOATING-POINT FUNCTIONS

Function Execution Time (msec)
Integer to FP 0.22
FP to Integer 0.12-0.16

Remainder 0.40-0.48
Square Root 1.18-1.24

EQ 0.10
LE 0.14
LT 0.15

EQ Signaling 0.09
LE Quiet 0.15
LT Quiet 0.15

As expected, the floating-point arithmetic operations are
slower compared to the integer arithmetic operations. The
execution times for the remaining floating-point functions are
presented in Table V.

V. CASE STUDY

To study the performance of the floating-point package, a
Butterworth Low Pass (BLP) Filter is implemented and tested
with square input signal both in the PC environment and in
the FPGA environment with 6502 soft-processor. The design
process and the results are presented in the following sections.

A. Butterworth Low Pass Filter Design

The design of a 2nd order Butterworth Low Pass (BLP) Filter
with 10 Hz cut-off frequency and 5 ms sampling time is
presented in this section. The reason for the choice of BLP
filter is due to its sensitivity for arithmetic errors. For fs as
the sampling frequency, fc as the cut-off frequency and N as
the order of the filter, by defining,

fr = fs

fc

Ωc = tan π
fr

k = N
2 − 1

c = 1 + 2 cos((2k+1)π
2N)Ωc + Ω2

c

(6)

the filter coefficients a0, a1, a2, b1 and b2 can be calculated
according to,

a0 = a
Ω2

c

c
a1 = 2a0

a2 = a0

b1 = 2(Ω2
c−1)
c

b2 = 1−2 cos(
(2k+1)π

2N)Ωc+Ω2
c

c

(7)

such that they satisfy,

a0 + a1 + a2 − b1 − b2 = 1 (8)

For the filter coefficients a0, a1, a2, b1 and b2 that are
calculated using equations in 7, the transfer function of a 2nd

order BLP Filter is presented in Equation 9.

Hy,u(z) =
a0 + a1z

−1 + a2z
−2

1 + b1z−1 + b2z−2
(9)

The filter coefficients for a 2nd order BLP Filter with cut-off
frequency of 10 Hz and sampling time of 5 ms are,

a0 = 0.02008336556421
a1 = 0.04016673112842
a2 = 0.02008336556421
b1 = −1.56101807580072
b2 = 0.64135153805756

The resulting bode plot of the filter is presented in Figure 1.
It is clear that the filter has a cut-off frequency of 10 Hz.

−50

−40

−30

−20

−10

0

10

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Frequency (Hz)

Fig. 1. Bode Plot of the BLP Filter

B. Fixed Point Arithmetic and the Butterworth Low Pass Filter

In this section, the representation of transfer functions in
computer systems, fixed-point arithmetic and the effects of
discrete representation on the digital filter properties will be
discussed.

According to [3], the easiest way to realize transfer functions
in microcontrollers is to use the direct form realization, such
that,

y(k) =
m∑

i=0

aiu(k − i)−
m∑

i=1

biy(k − i) (10)

As [3] states, the direct form has the advantage of having
its state variables as the delayed versions of its input and
output signals. This makes the direct form realization very
easy to implement. However, because the coefficients in the
realization are the same as the coefficients in the transfer
function, the realization is very sensitive to computational
errors especially if the system is of high order or if it has poles
or zeros very close to each other. There are other realizations,
such as the ladder realization, which can avoid this coefficient
sensitivity. Nevertheless, the direct form realization is used
to implement the BLP filter that is designed in the previous
section.

Many microcontrollers, such as the FPGA platform with
6502 soft-processor, use integer representation to represent
numbers and to do calculations. However, integers can
not handle decimals. Decimals consist of an integer part
and a fraction part and the integer representation can not
differentiate between the two. Therefore, the programmer
defines a fixed-point representation to be able to represent
the fractions. To do this, some bits of the integer are used
to represent the integer part of the decimal and some bits
of the integer are used to represent the decimal fraction.
Characteristics of the digital filter can be used to decide on
the number of fraction and integer bits.

When the transfer function coefficients are implemented
using fixed-point representation, the coefficients are perturbed
by some amount. This also perturbs the zeros and the poles
of the transfer function. Therefore, according to [1], one must
choose the number of fraction bits such that the maximum
percentage change of the poles relative to the unit circle are
less than some percentage ε. In other words,

∣∣∣∣
4pi

1− |pi|

∣∣∣∣ < ε (11)

[1] states that the number of fraction bits f , can be chosen
such that,

f = [− log2(ε|1− |pi|| |p2 − p1|)] (12)

The poles of the 2nd order BLP filter Hy,u(z) designed in the
previous section are,

pi
∼= 0.780509± 0.179324

Having ε equal to 0.1%, the Equation 12 becomes,

f ∼= 13.77

for the 2nd order BLP filter. Rounding up f , 14 bits are nec-
essary to represent the decimal fraction in order to guarantee
maximum 0.1% change in filter poles with respect to the unit

circle. Using 14 bits for the decimal fraction, the coefficients
of the 2nd order BLP filter become,

a0 = 0.02008056640625
a1 = 0.04016113281250
a2 = 0.02008056640625
b1 = −1.56097412109375
b2 = 0.64129638671875

The poles of the new transfer function H̃y,u(z) with the above
coefficients are,

pi
∼= 0.780487± 0.179266

Using Equation 11, the percent change in filter poles is,
∣∣∣∣
4pi

1− |pi|

∣∣∣∣ ∼= 0.0312%

which is less than ε equal to 0.1%.

The choice of ε is also very important. As the poles of the
filter perturb, the filter can not generate the same output as
the filter with the original coefficients. Therefore, an error ep

is introduced to the output as a result of the perturbations of
the filter coefficients. It is possible to calculate the bound on
the error ep according to,

‖4y‖∞ ≤ ‖gep,u‖1‖u‖∞ (13)

‖gep,u‖1 is the one norm of the impulse response of the system
from u to ep and ‖u‖∞ is the infinity-norm of the input
signal u. The one-norm and the infinity-norm of a vector x
are defined respectively by,

‖x‖1 :=
n∑

i=1

‖xi‖ (14)

‖x‖∞ := max(|x1|, ..., |xn|) (15)

The transfer function from u to ep can be computed by,

Hep,u(z) = Hy,u(z)− H̃y,u(z) (16)

It is possible to calculate the one-norm of the impulse response
from u to ep numerically. This is done by simulating the
system Hep,u(z) for an impulse input and summing the
absolute value of the output ep at each sampling period [1].
The infinity-norm of u is actually the maximum possible value
for the input signal to the system, which is a square signal with
magnitude one. The ‖gep,u‖1 and the ‖u‖∞ for the 2nd order
BLP filter are,

‖gep,u‖1 = 0.0003
‖u‖∞ = 1

Therefore the maximum amount of error introduced to the
output of the system due to the perturbation of the filter
coefficients is bounded by 0.0003.

Checking the bound on the range of the calculated variables
is a good indication to determine the number of bits necessary
for the integer part of the decimal. According to [1], the bound
on a particular variable, v, can be calculated according to,

‖v‖∞ ≤ ‖gv,u‖1‖u‖∞ (17)

‖gv,u‖1 is the one-norm of the impulse response of the system
from u to v and and ‖u‖∞ is the infinity-norm of the input
signal u. For the 2nd order BLP filter, the only calculated
variable is the filter output y. It is possible to compute ‖gy,u‖1
numerically as it is done for ‖gep,u‖1. The ‖gy,u‖1 and the
‖u‖∞ for the 2nd order BLP filter are,

‖gy,u‖1 = 1.0931
‖u‖∞ = 1

Therefore, the maximum value of the filter output y is 1.0931.
As a result, one bit for the integer part of the decimal is
enough to implement the filter.

However, internal calculations of the filter should also
be considered to avoid overflow. The maximum result that
can be internally computed is the result of the multiplication
b1y(k − 1). In the worst case, y(k − 1) is equal to 1.0931,
which is the maximum value of the filter output y. Therefore
the maximum value of the multiplication b1y(k−1) is around
1.7. One bit for integer part of the decimal is still enough to
implement the filter without overflow.

There is still one more check to be made to ensure that no
overflow occurs. In the worst case, when two numbers that
have fixed-point representation with one sign bit, n decimal
bits and f fraction bits are multiplied, the result has one sign
bit, 2n+1 decimal bits and 2f fraction bits. Later the result is
shifted f bits to the right to keep the number of fraction bits
constant. In the worst case, before shifting bits to the right, the
total number of bits that are used must be less than the total
number of bits available. If not, either guarding bits should be
implemented in the software or the calculations may overflow.

For the 2nd order BLP filter, one sign bit, one decimal
bit and 14 fraction bits are used. In the worst case, when two
numbers are multiplied, before shifting the result 14 bits to
the right, the result has one sign bit, three decimal bits and 28
fraction bits. The total number of bits that are used is equal
to 32. Therefore, it can be ensured that with this fixed-point
representation, no calculation overflow will occur.

Due to the precision of the fixed-point representation, a
truncation error et is also introduced to the system. Using
fixed-point representation, [3] states that the additions give
exact results but truncation error occurs in the multiplications.
According to [1], it is possible to calculate the bound on the
error et introduced to the output as a result of truncation
according to,

‖4y‖∞ ≤ ‖gy,et‖1‖et‖∞ (18)

‖gy,et
‖1 is the one norm of the impulse response of the system

from et to y and ‖et‖∞ is the maximum error introduced
as a result of truncation. It is possible to compute ‖gy,et

‖1
numerically as it is done for ‖gep,u‖1 and ‖gy,u‖1. The transfer
function from et to y is,

H(z) =
1

1 + b1z−1 + b2z−2
(19)

The ‖gy,et
‖1 and the ‖et‖∞ for the 2nd order BLP filter are,

‖gy,et
‖1 = 13.64

‖et‖∞ = 2−f = 2−14

Therefore the maximum amount of error introduced to the
system output due to truncation is less than 0.00083 with 14
fraction bits.

C. Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

S
te

p
In

pu
t (

u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
te

p
R

es
po

ns
e

(y
)

y
fpgaFP

y
fpgaINT

y
pcFP

Fig. 2. Step Responses

The BLP Filter designed in Section V-A is tested in FPGA
with 6502 soft-processor using the fixed-point representation
explained in Section V-B for square input signal. The cal-
culations are made with both using integers and SoftFloat
floating-point implementation package. The source code for
the two filters can be found in Appendix C. The same filter
is also tested in PC using floating-points for comparison.
The resulting outputs are ploted in Figure 2 where yfpgaFP

stands for the FPGA output calculated using floating-points,
yfpgaINT stands for the FPGA output calculated using integers
and ypcFP stands for the PC output calculated using floating-
points with the original filter coefficients of Hy,u(z). In
Section V-B, the bound on the output was calculated as,

‖y‖∞ = 1.0931

In Figure 2, the maximum value of the output signal is 1.0444
for the floating-point calculations and 1.0445 for the integer
calculations, which are less than the calculated ‖y‖∞.

The error between the integer calculations yfpgaINT and
floating-point calculations yfpgaFP in the FPGA platform is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4

5
x 10

−4

Time (sec)

E
rr

or

Fig. 3. FPGA Error

presented in Figure 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Time (sec)

E
rr

or

Fig. 4. Error due to Truncation in Filter Coefficients

In Figure 4, the error between Hy,u(z) and H̃y,u(z) is pre-
sented, using the outputs calculated in the PC platform. This is
to show the error ep introduced to the system output as a result
of the perturbation of the filter coefficients. In Section V-B,
the bound on the error was calculated as,

‖4y‖∞ = ‖ep‖∞ = 0.0003

In Figure 4, the maximum error on the system output is equal
to 0.00014, which is less than ‖ep‖∞.

In Figure 5, two error plots are presented. In the above plot,
ypcFP is calculated using the original filter coefficients in
Hy,u(z) in order to show the total error introduced to the
system as result of both filter coefficient perturbation and
truncations in multiplications. In the second plot, ypcFP is
calculated using the truncated filter coefficients in H̃y,u(z)
in order to show only the error et introduced to the system

output as a result of truncations made in the multiplications.
In Section V-B, the bound on the error et was calculated as,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

4

6
x 10

−4

Time (sec)

E
rr

or

Y
pcFP

−Y
fpgaFP

Y
pcFP

−Y
fpgaINT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

4

6
x 10

−4

Time (sec)

E
rr

or

Y
pcFP

−Y
fpgaFP

Y
pcFP

−Y
fpgaINT

Fig. 5. Error on the FPGA Output

‖4y‖∞ = ‖et‖∞ = 0.00083

In the second plot presented in Figure 5, the maximum
truncation errors introduced to the system outputs are equal
to 0.0004 for the integer calculations and 0.0001 for the
floating-point calculations. Both of them are less than the
calculated ‖et‖∞.

The filter is tested for 200 input points. For each sample, the
integer calculations took 0.78 ms in the FPGA platform. How-
ever, the performance of the SoftFloat floating-point package
was 12.56 times slower. For each sample, the floating-point
calculations took almost 9.795 ms. Since the sampling time
of the BLP Filter is 5 ms, if the filter was tested in real-
time, the FPGA platform with 6502 soft-processor would fail
to calculate the outputs with floating-point calculations in the
given sampling period.

VI. CONCLUSION

8051s, PICs and FPGAs are compared for control applications.
It is concluded that 8051s and PICs are suitable for
simple control applications due to their supplier defined
functionalities, which limit them in handling complex
designs and executing high precision computations. On
the other hand, eventhough they are slower and more
expensive, FPGAs with soft-processors introduce more
flexible microcontroller architectures enabling user defined
functionalities depending on the complexity of the application.

It is usually more convenient to use floating-points in
scientific and engineering applications. That is why floating-
point support is studied on FPGA with 6502 soft-processor
in this paper. The IEEE 754 - Standard for Binary Floating-
Point Arithmetic is discussed for single precision format.
The representation of normalized and denormalized floating-
point numbers, special values, exceptions, rounding modes

and gradual underflow are introduced to the reader. It is
emphasized that floating-point implementation is slower
compared to integer representation and arithmetic. However,
it introduces a greater range and sometimes a higher precision.

The SoftFloat floating-point implementation package is
ported on a FPGA platform with 6502 soft-processor. The
execution times of the floating-point functions are presented
and comparisons with integers are given for the arithmetic
functions. The floating-point implementation was much
slower compared to integer operations.

A 2nd order Butterworth Low Pass (BLP) Filter is used to
test the performance of the SoftFloat package. In the case
study, the design of the BLP filter, implementation of filters
in microcontrollers and the use of fixed-point arithmetic
are explained in detail. A methodology is given in order to
choose the number of integer and fraction bits to implement
fixed-point arithmetic. Moreover, the effects of truncation
and fixed-point arithmetic on the filter properties are discussed.

In the case study, the floating-point package was very
slow to implement the 2nd order BLP filter with 5 ms
sampling period. The calculations took about 9.795 ms at
each sampling period, which means that the filter would fail
to calculate filter outputs if it had performed in real-time.
However, the performance of the floating-point package
was better in terms of the truncation error et introduced to
the system output compared to the integer computations.
Therefore, it can be concluded that, even the performance
is better in terms of precision, the SoftFloat floating-point
package is very slow on the FPGA platform with 6502
soft-processor. It is not feasible to use the package for
periodic applications with high sampling frequencies.

APPENDIX

A. Porting Details

The most up-to-date information about SoftFloat and the latest releases can be found at the web page [10]. There are six files
to be modified in order to port the SoftFloat floating-point package to a FPGA with 6502 soft-processor. Four of these files
are target specific and the remaining two are target independent.

1) Target Specific Files:
• 6502.h - The integer sizes for FPGA with 6502 soft-processor and some C preprocessor macros are defined. BITS64 is

not defined since 64-bit integer types are not supported. The compiler does not support explicit inlining. Therefore, this
macro is defined to be static. The necessary definitions for this file are,
#define LITTLEENDIAN
typedef signed char flag;
typedef unsigned char uint8;
typedef signed char int8;
typedef int uint16;
typedef int int16;
typedef unsigned long uint32;
typedef signed long int32;
typedef unsigned char bits8;
typedef signed char sbits8;
typedef unsigned int bits16;
typedef signed int sbits16;
typedef unsigned long bits32;
typedef signed long sbits32;
#define INLINE static

• softfloat.h - The following modifications are necessary for this file:
typedef !!!bits32 float32; -> typedef unsigned long float32;
extern !!!int8 float_detect_tininess; -> extern signed char float_detect_tininess;
extern !!!int8 float_rounding_mode; -> extern signed char float_rounding_mode;
extern !!!int8 float_exception_flags; -> extern signed char float_exception_flags;
void float_raise(!!!int8); -> void float_raise(signed char);
float32 int32_to_float32(!!!int32); -> float32 int32_to_float32(signed long);
!!!int32 float32_to_int32(float32); -> signed long float32_to_int32(float32);
!!!int32 float32_to_int32_round_to -> signed long float32_to_int32_round

_zero(float32); _to_zero(float32);
!!!flag float32_eq(float32, float32); -> char float32_eq(float32, float32);
!!!flag float32_le(float32, float32); -> char float32_le(float32, float32);
!!!flag float32_lt(float32, float32); -> char float32_lt(float32, float32);
!!!flag float32_eq_signaling -> char float32_eq_signaling

(float32, float32); (float32, float32);
!!!flag float32_le_quiet(float32, -> char float32_le_quiet(float32,

float32); float32);
!!!flag float32_lt_quiet(float32, -> char float32_lt_quiet(float32,

float32); float32);
!!!flag float32_is_signaling_nan(-> signed char float32_is_signaling_nan(

float32); float32);

The compiler does not support struct parameter passing. Therefore, it is not possible to port the double-precision floating-
point functions to the FPGA platform. The declarations of the following double-precision functions should be removed
from the file.
typedef struct {!!!bits32 high, low;} float64;
float64 int32_to_float64(!!!int32);
float64 float32_to_float64(float32);

!!!int32 float64_to_int32(float64);
!!!int32 float64_to_int32_round_to_zero(float64);
float32 float64_to_float32(float64);
float64 float64_round_to_int(float64);
float64 float64_add(float64, float64);
float64 float64_sub(float64, float64);
float64 float64_mul(float64, float64);
float64 float64_div(float64, float64);
float64 float64_rem(float64, float64);
float64 float64_sqrt(float64);
!!!flag float64_eq(float64, float64);
!!!flag float64_le(float64, float64);
!!!flag float64_lt(float64, float64);
!!!flag float64_eq_signaling(float64, float64);
!!!flag float64_le_quiet(float64, float64);
!!!flag float64_lt_quiet(float64, float64);
!!!flag float64_is_signaling_nan(float64);

• milieu.h - The only necessary modification for this file is,
#include "../../../processors/!!!processor.h" -> #include "6502.h"

• softfloat-specialize - The following functions should be removed from this file:
static float32 commonNaNToFloat32(commonNaNT a)
static commonNaNT float32ToCommonNaN(float32 a)
flag float64_is_nan(float64 a)
flag float64_is_signaling_nan(float64 a)
static commonNaNT float64ToCommonNaN(float64 a)
static float64 commonNaNToFloat64(commonNaNT a)
static float64 propagateFloat64NaN(float64 a, float64 b)

2) Target Independent Files:
• softfloat-macros - The following functions should be removed from the file:
INLINE bits32 extractFloat64Frac1 static float64 addFloat64Sigs
INLINE bits32 extractFloat64Frac0 static float64 subFloat64Sigs
INLINE int16 extractFloat64Exp float64 float64_add
INLINE flag extractFloat64Sign float64 float64_sub
static void normalizeFloat64Subnormal float64 float64_mul
INLINE float64 packFloat64 float64 float64_div
static float64 roundAndPackFloat64 float64 float64_rem
static float64 normalizeRoundAndPackFloat64 float64 float64_sqrt
float64 int32_to_float64 flag float64_eq
float64 float32_to_float64 flag float64_le
int32 float64_to_int32 flag float64_lt
int32 float64_to_int32_round_to_zero flag float64_eq_signaling
float32 float64_to_float32 flag float64_le_quiet
float64 float64_round_to_int flag float64_lt_quiet

• softfloat-macros - The following functions should be removed from the file:
INLINE flag ne64 INLINE flag lt64
INLINE flag le64 INLINE flag eq64
INLINE void mul64To128 INLINE void mul64By32To96
INLINE void sub96 INLINE void add96
INLINE void shift64Right INLINE void shift64RightJamming
INLINE void shortShift96Left INLINE void shift64ExtraRightJamming

B. Bugs

1 The function normalizeRoundAndPackFloat32 in softfloat.c has a bug with the 6502 soft-processor. When shiftcount
is equal to zero, it returns zero result. To avoid this bug, change the original function,
static float32 normalizeRoundAndPackFloat32(flag zSign, int16 zExp,
bits32 zSig) {

int8 shiftCount;
shiftCount = countLeadingZeros32(zSig) - 1;

return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount);

}

with the following,
static float32
normalizeRoundAndPackFloat32(flag zSign, int16 zExp, bits32 zSig)

{
int8 shiftCount;
shiftCount = countLeadingZeros32(zSig) - 1;

if(shiftCount == 0)
{
return roundAndPackFloat32(zSign, zExp, zSig);

}
return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount);

}

2 The function roundAndPackFloat32 in softfloat.c has a bug with the 6502 soft-processor. Sometimes it changes the
sign bit from negative to positive. To avoid this bug, remove the following line:

zSig &= ˜ (((roundBits ˆ 0x40) == 0) & roundNearestEven);

C. Digital Filter Source Code

This function is implemented for integer computations in order to multiply two numbers and shift the result 14 bits
to the right to keep the number of fraction bits constant:

signed long mul(signed long a1,signed long a2){
signed long ans=(a1*a2);
return (ans >> 14);

}

This loop computes the filter output using direct form realization with fixed-point integer computations:

b1=0x000063E7; b2=0x0000290B; b2=b2ˆ0xFFFFFFFF; b2=b2+0x00000001;
a0=0x00000149; a1=0x00000292; a2=0x00000149;
for(h=0;h<200;h++) {

if(h<100){
u=(1 << 14);}

else{
u=0;}

y=mul(b1,y_1)+mul(b2,y_2)+mul(a0,u)+mul(a1,u_1)+mul(a2,u_2);
x_2=x_1;
x_1=x;
y_2=y_1;
y_1=y;

}

It is possible to implement the filter in two ways using floating points. First way is to compute the rounded floating-
point bit representations of the original filter coefficients and use them to implement the filter. The floating-point
bit representations of decimals can be computed using the web page [11]. The second way is to use the same filter
coefficients and arithmetic operations that are used for the fixed-point integer computations. Using the first method, the
filter coefficients are perturbed less and therefore the filter output is more accurate than the second method. However,
second method is used in Section V in order to be able to present the truncation performance of the floating-point
arithmetic over integer computations. Otherwise, the filters used for integer and floating-point computations would
had different filter coefficients and it would be harder to derive conclusions. This way it is both possible to observe the
effects of fixed-point representation and the effects of truncation in multiplication and division from the experiment
results. The following loop computes the filter output using direct form realization with floating-point computations:

bf1=int32_to_float32(b1); bf2=int32_to_float32(b2);
af0=int32_to_float32(a0); af1=int32_to_float32(a1); af2=af0;
s_14=int32_to_float32(0x00004000); for(h=0;h<200;h++) {

if(h<100){
u=u1;}

else{
u=u0;}

sf1=float32_add(float32_div(float32_mul(bf1,yf_1),s_14),
float32_div(float32_mul(bf2,yf_2),s_14));

sf2=float32_add(float32_div(float32_mul(af0,u),s_14),
float32_div(float32_mul(af1,u_1),s_14));

sf2=float32_add(sf2, float32_div(float32_mul(af2,u_2),s_14));
yf=float32_add(sf1,sf2);
u_2=u_1;
u_1=u;
yf_2=yf_1;
yf_1=yf;

}

REFERENCES

[1] J. Carletta, R. Veillette, F. Krach, Z. Fang. (2003). Determining Appropriate Precisions for Signals in Fixed-Point IIR Filters. DAC.
[2] Intel. (1999). Floating Point Unit. Intel Architecture Software Developers Manual - Volume 1: Basic Architecture.

http://www.intel.com/design/pentiumii/manuals/243190.htm.
[3] K. J. Astrom, B. Wittenmark. (1997). Realization of Digital Controllers. Computer-Controlled Systems, pp. 349-360. Prentice Hall, New Jersey.
[4] Z. Karakehayov, K.S. Christensen, O. Winther. (1999). Embedded Systems Design with 8051 Microcontrollers. Marcel Dekker, Inc., New Jersey.
[5] P.H. Staken. (1989). A Practitioner’s Guide to RISC Microprocessor Architecture. John Wiley & Sons, Inc., New York.
[6] N. Alexandridis. (1993). Design of Microprocessor-Based Systems. Prentice Hall, New Jersey.
[7] J.V. Oldfield, R.C. Dorf. (1995). Field Programmable Gate Arrays - Reconfigurable Logic for Rapid Prototyping and Implementation of Digital Systems.

John Wiley & Sons, Inc., New York.
[8] S.M. Trimberger. (1994). Field Programmable Gate Array Technology. Kluwer Academic Publishers, Boston.
[9] R. Mak. (2003). The Java Programmer’s Guide to Numerical Computing. Prentice Hall, New Jersey.

[10] http://www.cs.berkeley.edu/ jhauser/arithmetic/SoftFloat.html
[11] http://babbage.cs.qc.edu/courses/cs341/IEEE-754.html

