The Tics RTOS Programmer's Guide

by Michael D. McDonnell, Tics Realtime
Copyright 1992- 2004, Michael D. McDonnell, Tics Realtime.
All rights reserved.

www.TicsRealtime.com

1 PROGRAMMER'S GUIDE .3

1.1 INTRODUCTION.eeeeeeeeessssesssassssessssssnssnsssssssses 3
1.2 TASK FORMAT ceeuessnecceceeeessssnsssscscssessssssssssscssssssssssssssssssssssssassssssssssssssassssssssssssssssssssssnssssss 3
1.3 STARTING T ASKS.eeeeeeeennnnencceceeesonasssessssecsssssssnssssssscsssssnsssssssssosssssnsassssssssssssssnssssssssssssssssan 3
1.4 HELLO WORLD FEXAMPLE cccceeeeeeeeesessnsssssssssnssssssses 4
1.5 TASK ATTRIBUTES . ceceeeeessssssssccccessssssssssssscccssssssssssssssessssasssssssssssssssassssssssssssssassssssssssssssssss 4
1.5.1 TCB FLAGS . ttttiiiiiiiiiiiiiiiiieiiiiieeieeieeeieeeeeeeeeeeeeiii et eeeeeeeeeeee e eeeeeeeeeeeeeannen, 4
1.6 TASK SWITCHING.ueeecceceeessssssssccccsssssassssssscscsssssssssssssscssssssasssssssscssasssasasssssssssssasasssssssssssssss 5
T D A 510 o) T TP 5
1.7 SENDING DATA WITH [VIESSAGES.eeesscsssssssssssssss 5
1.8 FREEING IV ESSAGES.cceuuseecccecceeeasnnsnssscccessosassssssssscsssssasssssssssssssssssnssssssscssssssnssssssssssssssassssse 6
1.9 WAITING FOR MULTIPLE MIESSAGES.ceeeeeeeeeeeeeeeeeesesseesssessssssssssssssssssssssssssssssnsssssssssnsssssssssns 6
1.9.1 INTER-TASK COMMUNICATION EXAMPLE. ... iiiiiiiieeeeneeiiiieeiieeeieeeeeeeeieeesneeeeeeeeeseeeeneeeeeneees 6
1.10 TIMED WAIT FOR IMESSAGE.ceeeeeeeeeeeeesseasesssessansssssssssnsssssssssss 7
1.11 RESPONDING TO IVIESSAGES.eeeeecccceeeesssssssssccccesssssasssssscsse 8
1.12 CANCELING TIMERS AND [V ESSAGES..ecccceceeeeesnseessscessesssssssssssscssssssssssssssscsssssssassssssssssassssss 8
1.13 MIESSAGE INUMBERS.c00ssassssssssscsssnsssssssssss 8
114 TIMERS. ceeeeeeeeensnnnsscccecesssssssssssscessssansssssssssesssssssssssssssssssssssssssssssssssssnssssssssssnssssssssssssssssss 8
104] P AUSE ettt ettt eeee e eeeeeeeanaaes 8
1.14.2 STARTING A TIMER. . .uuuuiiiiiiiiiteeeeeieieeeeeeeeeseeeeeeieeseeeeteeeeeeeeeeenneeeeeeeeesesennnaeeeeeeeeensaees 8
1.14.3 MODIFYING TIMER ATTRIBUTES. .eiittiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieeieeeeieeeeeeeeeeeeeieeeeeeeeennen, 9
1.14.4 PERIODIC TIMERS.ceiiiiiiiiiiiiiiiiiiiiiiiieeieeieeeeeeeeannnn, 9
1,15 TIME-SLICING.uueeccccceceesssssssssccecsssssssssssssscosssssasssssssscsssssssnsssssssesssssssanssssssssessnssssansssssnssss 10
1.15.1 CHANGING TIME=SLICE ATTRIBUTES..eeiitttiiiiiiiiiiiiiiiiiiiieeiiieieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 10
1.16 CRITICAL REGIONS. ceceeeeeeeeanansncsecsesssansssssscccesssssssssssssssesssssasssssssssessssssssssssssssssnsssssssssse 11
1.17 PREEMPTION eeuueeccccccessesanseesssscsssssssssssssssssssssssssssssssssasssssssssssssssessssssnsssssssssssssannssssssnssss 11
1,18 PRIORITY eeeeeenssssncccceseessssssssscccsssssssssssssscssssssssssssssssssssssssasssssssssesssssssssssssssssssssnssssssnssss 11
1.19 MULTI-TASKING WITH IMIS-DOS...ccuuueeeeeeeeeeennnnneseccceeeanansasesssessessssssssssssssesssssassssssssansss 12
1.20 COOPERATIVE TASKS.ceeeeeeeeeeseseeesasessnsssssosssnsssssssses 12
1.20.1 CooPERATIVE TASKS SHARE THE SAME STACK ...iiiiiiiireennieeiiieeeieeeiiieieeeereeneeeeneeeenneees 12
1.20.2 APPLICATION OF COOPERATIVE TASKS..iiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 13
1.20.3 STARTING COOPERATIVE T ASKS. .. iiiiieeeeennneiiiieeiieeeeniseeeeeeeeeesssieeeeeeeeereneeeeneeeeneeeenneees 13
1.21 SENDING AND RECEIVING M ATL.cuueeeccceeeeeeansnneessscccssesssnssssssscsssssssssssssssssnssscsssssosassssssnssss 13
1.21.1 MAIL EXAMPLE ciiiiiiiiiiiiteeeieieeeeeeeee oot eeeeeeeeeeeieeeeeeeeeeeeennes 13
1.21.2 MULTIPLE TASK INSTANCE EXAMPLE ..iiiiiiuieeeiiiiiiiiieiiieieeeeieeeiieeeeeeeeeeeeeeseennieeeeeennenes 14
1.22 DATA STRUCTURES.ceeeeeeeseess 14
1.23 PROGRAMMING ISR'S.cceeeennnenccceceeeeeansnnnsscccceseesssnsssssccccsssssssssssscssessssssssssssssscsasssanssssssansse 14
1.24 TIMER LIST ..cceeeeeesessans 15
1.24.1 DIFFERENTIAL TIMERS. .uuuiiiituiiiieaeieiiteee ettt ettt eeeeeeeeeeeeeeeeeneeeeeeeneeeneeeeeeeeaeeenes 15
1.25 Tics PARAMETER STRUCTURE .15
1.26 MAILBOX STRUCTURE eeeeeeeeesesesssesesesssssssssssssssssssssssesssssssssssssssssssssssssssssssnssssssssssssssssssnns 16
1.27 THE FREE MESSAGE LLIST. ceeeeeeennnnnneccececeesenssssssccccssssnssssssssscesssssnsassssssscsssssssosasssssssssse 16
1.28 INOTES & (CAVEATS ceeeeeeeeeeeseseesesss 17
1.29 INSTALLATION, COMPILING, AND LLINKING.eeessseeccccceeeessssssssscccsseasssssssssscscssssanasssssssssassansse 18
1.30 EMBEDDING TICS.ceeeeeeeeeeeeeeeseeesessanssssssssnns 18
1.31 SAMPLE PROGRAMS..cceeeeeeeeeessnsnsesss 18

1.32 ERRORS ...18

1.33 DEBUGGING . ceeeeessensasssssssscssssssnnssssssssssssssssasssssssssssssssnnasssssssssssssssnnssssssssssssssssssssssssssssasns 18
1.34 USER LLEVEL KKERNEL INTERFACE.ceeessesccceeeeeesssssssssccccsssssssssssssccssssssnsssssnsssssssssssasssssssssss 19
CANCELMSG, CANCELTIMERcevtiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseaeaaneesssaaneeessannnaeeees 20
ENTERREGION, EXITREGION.....ccoiiiiiiiiiiiii e 21
155 e 1 (TR 22
FREEIMIALL......coeiiettrreeiie e e oo eeeciteeeeeeeeeeeeettaaeeeeeeeeeeesasaeeeeeeeeeeesatsaeeeeseeeeeansassreeeeeessrsssannnnnnnes 23
13N 0111 T TP 24
MAKEMATIL, SENDIMAIL. ...ttt sssssnsssssssssnsssnsnsnnsssssesnnnnsnns 25
MAKEMSG, SENDIMSG...uuuuuteieieietiieieieseeeseseseeeseaesesessaesssenssssssnsssssssssssssssssssssssssssnsnsnnnssessnnnnnnns 26
MAKE TASK, START TASK .. eeieieeeeeeeeeee ettt eeeeeeeeeeeeeeeeearaaaeeees 27
MAKE TTICS, STARTTICS. ..ot e e e e et ee e e et et e e e eraanaeeees 28
MAKETIMER, STARTTIMER. .. .uuuuenieieeeeeeeeee e e e e e s eaaaneeesennnnneeenes 29
PAUSE 1 tttvveeeeeeeeeietitrreeeeeeeeeeeaettaseeeeseeeeeasatssaateeeeeseasattssaaeseeeeeanaararasaaeeeeenaattreesertaanneeeeens 30
ROVIMIALL ..ottt 31
ROVIMISGiceiiiieeieetitee ettt e e et et e e e e e eeeeetaaa e e e e e e e eeeeeattsaaeeaaeeeeeseatsraseeesesesssstbnnannnnnns 32
SUSPEND.......eeeeteuutrreereeeeesessssseeeseeeeseaassassesseesesaanisrsesssseeesanssssssesseeseesnssssresesesessennsssssssnnnns 33
RN Y U 3 34
7N G 81 K TP 35
WAKEUP.....cceiteieeeeeee et et 36
_DOSISRRET, ISRRET.....iiiiiiiiiiiiiitie ettt e 37
L FREEIMISGlttttteiitee ettt ettt ettt e ettt e e et e e et e e e ettt e e e e bteeaaaaaaeaeeeaeeaaaann 38
CISRPREEMPT. ..ttt ettt ettt e ettt e et e et e e st e e e bt e e eab e e e et taees 39
_ MAKEMSG, SENDMSGu..uiiiiiieiiiieiiiieeitee sttt e steeesteeesitee e iaeeeneaaeensaeesnsneessseeesnseeesssnsnnsnneeens 40
BTN ol 1) SR USPPR 41

ROVIMISGieiiiiie ettt ettt ettt e et e e e e e e e et a e e e e e eeeeesatbaaaeeeeeeeesasass b aasanneeeeeeeaens 42

SN 031 N | PR 43

WAITIMALL . ..vtvveeiee e e ettt eeeectte et e e e e e eee ettt a e e e e e e eeeeeatraaaeeeeeeeesestassaeeaeeeeesetnsrareraaeeaeeanns 44

7N 5 81 TSR 45
WAKEUP. ..ttt ettee ettt e ettt e sttt e e atteesat e e e ab e e easb e e e bt e e eabt e e e abb e e e a bt e e eabe e e ab e e e ehb e e e bbbt e e e e e e eaantbneeeens 46
WAIT TIMEDIMISG . vtvveeiieeee e ettt ettt eeeet e e e e e eeenatraeeeeeeeeeeesatareeeeeeeeeeenaasrreeeens 47
161215 5 T 48
GETMEM, GETIMEM...eiuiiiiiiiiieiiie ettt ettt ettt e ettt e ettt e ettt e st e e sabteesabteesabeeeeeessnebaeeeeeeannas 49
MAKEMEM, MAKEIMEM...cciiiiiiiiiiiiiiieeeeitte e et ee e ettt e e etteeeessibteeesensteeeesnnsteeessnsasssenaeeeeeees 50
PUTIMEM, PUTIMEEM....ciiiiiiiitie ittt ettt ettt ettt e et e st e st e e sabteesabeeesabaeeas 51

1 Programmer's Guide

1.1 Introduction

Tics allows C functions (tasks) to run concurrently. Tasks do not invoke one
another directly like C functions; they communicate with one another using
messages or mail. Tasks may send messages or mail, wait for messages or mail,
cancel messages, check for messages or mail, pause, issue timers, cancel timers,
suspend, and time-slice with other tasks. Tasks may or may not have a private
stack.

Tasks are C functions with the following format:

1.2 Task Format

void task(void)

{

/* Perform one time operations here. */
while (TRUE) {
/* Main code for task here. */

}

Tasks have no arguments and never return. On entry, tasks perform initializations,
if any, then enter an infinite while loop.

1.3 Starting Tasks
Tasks are started with the makeTask and startTask calls.

typeTcb * tcb;
tcb = makeTask (taskName, taskNum);
startTask (tcb) ;

makeTask creates a task control block for task taskName (C function name) with
task number taskNum. The task control block has the following default values:

Priority equals DEF PRI (defined in Tics header file).
Time-slicing is disabled.

Three mailboxes are allocated.

One message queue is allocated.

The cooperative bit in the flags field of the tcb is cleared.

startTask adds the task to the ready queue according to its priority and allocates a
1K stack if the cooperative bit in the flags field is clear. Task behavior can be
modified prior to starting the task.

tcb = makeTask (taskName, taskNum);

/* Raise priority */

tcb->pri = DEF PRI - 1;

startTask (tcb) ;

The tcb fields pri and flags are used to modify task attributes. These fields (except
for the cooperative bit) can be modified at any time before or after the task has
been started.

1.4 Hello World Example

#define NUM MSGS 100
typeFreeMsg MsgSpace [NUM MSGS];
void taskA (void)
{
while (TRUE) {
printf ("Hello from task A\n");
}
}

void main ()
{
typeTcb * tcb;
startTics (makeTics (MsgSpace, NUM MSGS)) ;
tcb = makeTask (taskA, 0);
startTask (tcb) ;
suspend () ;

}

The listing shows one task (taskA4) and the main program required to start it.
makeTics creates a structure of type typeTics and returns a pointer to it.
makeTics defaults the task stack size (1024 bytes), and the timer isr interval (5
milliseconds). startTics initializes hardware registers and Tics data structures.

makeTask creates a tcb for faskA. startTask adds the tcb to the ready queue
according to its priority.

suspend suspends the current task, (main in the example), and switches to the
next ready task in the ready queue, which in this case is taskA. Once taskA gains
control it runs forever, since it is the only user task in the system.

1.5 Task Attributes

Task attributes are modified by changing the pri or flags field in the tcb. The
default priority is DEF_PRI. To raise a task's priority, choose a number /ess than
DEF PRI

/* Raise priority */
tcbA-> pri = DEF PRI - 1;
/* Lower priority */
tcbC->pri = DEF PRI + 1;

Task priorities should always be chosen relative to DEF_PRI.

1.5.1 Tcb Flags

Each bit of the flags field represents an attribute. See the chapter Tasks and Task
Control Blocks for a complete description of the tcb and the flags bits.

1.6 Task Switching

Tasks run until they are preempted or give up control voluntarily. A task gives up
control voluntarily by yielding, waiting for a message or mail, issuing a pause, or
by suspending itself with a suspend. A task is preempted when it sends a message
to a higher priority task, an interrupt occurs and the isr sends a message to a
higher priority task (the isr must invoke _isrRet or _doslIsrRet in order for this to
occur), or its time-slice is used up and the time-slice option is in effect.

1.6.1 Yielding

The yield function suspends the active task so that the next ready to run task can
run. The task will run again when all tasks of the same priority have run. Note that
continuous yielding can starve lower priority tasks. Yielding is recommended
only when all tasks run at the same priority.

1.6.1.1 Waiting for a Message
A task can wait for a message using the waitMsg function. waitMsg(msgNum)
suspends the active task until a message with message number msgNum arrives.

#define HELLO 1000
typeMsg * msg;
msg = waitMsg (HELLO) ;

1.6.1.2 Inspecting the Message Queue
The message queue may also be inspected without suspending by using revMsg
as shown below.

#define HELLO 1000
typeMsg * msg;
msg = rcvMsg (HELLO) ;

Unlike waitMsg, revMsg always returns. If the desired message is not in the
queue, NULL is returned, otherwise revMsg returns a pointer to the desired
message.

1.6.1.3 Waiting forAny Message

A task can wait for a the arrival of any message regardless of its message number
by specifying ANY MSG as the message number.

typeMsg * msg;
msg = waitMsg (ANY MSG) ;

Similarly, the message at the front of the queue can be retrieved by using
ANY_MSG with revMsg.

typeMsg * msg;
msg = rcvMsg (ANY MSG) ;

1.7 Sending Data with Messages

Integer data, long data, or a pointer to data can be sent with a message by filling
in the appropriate fields of the message as shown below.

#define DATA 1000

typeMsg * msg;
extern typeTcb * TcbB;
struct {int x,vy,z;} dataStruct;

msg = makeMsg (TcbB, DATA);

msg->iData = 5; /* Integer data */
msg->1Data = 7L; /* Long data */
msg->pData = &dataStruct; /* Ptr data */
sendMsg (msqg) ;

Data is retrieved by the receiving task by extracting the data from the received
message as shown below.

int iData;

long 1lData;

typeMsg * msg;
typeData * dataPtr;

msg = waitMsg (DATA) ;
iData = msg->iData;
lData = msg->1Data;
dataPtr = msg->pData;
freeMsg (msg) ;

1.8 Freeing Messages

Note that when a message is received it must be freed after use. Freeing a
message adds it back to the message free list so that it can be reused by
makeMsg.

1.9 Waiting for Multiple Messages

It is sometimes necessary to launch numerous messages, and then wait for
responses. This is illustrated by the example below.

1.9.1 Inter-task Communication Example

#define HELLO 1000
#define HELLO BACK 1002

typeMsg * timer, * msg;
long timerSeqgNum;
extern typeTcb * TaskA;

timer = makeTimer (200L) ;
timerSegNum = timer->segNum;
startTimer (timer) ;
sendMsg (makeMsg (TaskA, HELLO));
msg = waitMsg (ANY MSG) ;
switch (msg->msgNum) {
case TIMEOUT:
/* Handle msg timeout... */
break;
case HELLO BACK:
cancelTimer (timer, timerSegNum) ;
/* Handle HELLO BACK... */

break;

}

A timer is started and its message and sequence number are saved. A message is
then sent to TaskA, and the task waits for a response. On receiving a message the
task resumes, and the first message in the message queue is retrieved. The switch
statement is then used to handle the message. Notice that in the case of receiving a
HELLO BACK the TIMEOUT message is cancelled.

1.10 Timed Wait for Message

It is sometimes useful to wait only so long for a message; if the message is not
received within the time period, the message is cancelled. This can be done by
starting a timer as in the example above or by using waitTimedMsg as shown
below.

#define HELLO 1000
typeMsg * msg;

msg = waitTimedMsg (HELLO, 2000L);

if (msg->msgNum == HELLO) {

/* Msg was received before the timeout. */
}

else {

/* Timeout occurred. */

}

freeMsg (msqg) ;

The code allows 2 seconds for the message HELLO to arrive. waitTimedMsg
returns a pointer to a message. The message will either be a TIMEOUT message
or the HELLO message, whichever arrives first.

#define NUM MSGS 100

#define HELLO 1000

#define HELLO BACK 1001
typeFreeMsg MsgSpace [NUM MSGS];
typeTcb * TcbA, * TcbB;

void taskA (void)
{
typeMsg * msg;
while (TRUE) {
sendMsg (makeMsqg (TcbB, HELLO)) ;
freeMsg (waitMsg (HELLO BACK));
}
}
void taskB(void)
{
typeMsg * msg;
typeTcb * senderTcb;
while (TRUE) {
msg = waitMsg (HELLO) ;
senderTcb = msg->senderTcb;
freeMsg (msqg) ;
sendMsg (makeMsg (senderTcb, HELLO BACK));
}
}
void main ()

{

}

startTics (makeTics (MsgSpace, NUM MSGS)) ;
TcbA = startTask (makeTask (taskad, 0));
TcbB = startTask (makeTask (taskB, 1));
suspend () ;

1.11 Responding to Messages

The listing shows two tasks, faskA and taskB. taskA sends a message to taskB and
waits for a response. On receiving the message, taskB responds. This process
continues forever. taskB responds without prior knowledge of the sender by
accessing the senderTch field in the received message.

1.12 Canceling Timers and Messages

It is sometimes necessary to cancel timers and messages. In order to cancel a
message or timer the sequence number of the message must be known. This is
acquired from the message structure after the message is constructed as shown
below.

#define HELLO 1000

typeMsg * timer, * msg;

long timerSegNum, msgSegNum;
extern typeTcb * TaskA;

timer = makeTimer (200L) ;
timerSegNum = timer->segNum;
startTimer (timer) ;

msg = makeMsg (TaskA, HELLO) ;
msgSegNum = msg->segNum;
sendMsg (msqg) ;

cancelTimer (timer, timerSegNum) ;
cancelMsg (msg, msgSegNum) ;

1.13 Message Numbers

User message numbers must not be less than 0 or greater than 32767.

1.14 Timers

Tics supports three types of timers: pause, one-shot timers, and periodic timers.
Timers may also be cancelled. pause's are used in-line to suspend program
execution for a specified number of milliseconds.

1.141 Pause

selectPort () ;

pause (20L) ; /* Wait 20 ms before reading. */
readPort () ;

1.14.2 Starting a Timer

One-shot timers are issued as follows.

typeMsg * timer;
timer = makeTimer (100L) ;

startTimer (timer) ;
/* Do other things... */
waitMsg (TIMEOUT) ;

startTimer causes a message with number TIMEOUT (defined in the Tics header
file) to be sent to the issuing task after the specified timer interval has elapsed.

1.14.3 Modifying Timer Attributes

Timer attributes may be modified as follows.

#define READ DATA 1000
typeMsg * timer;
extern * IoPollingTcb;

timer = makeTimer (100L);

/* Make it a periodic timer */
timer->flags |= PERIODIC;

/* Change receiver of TIMEOUT msg. */
timer->destTcb = IoPollingTcb;

/* Change msg num */

timer->msgNum = READ DATA;

startTimer (timer) ;

The timer is changed to a PERIODIC timer (default is one-shot timer), the
message number has been changed to READ DATA, (default is TIMEOUT), and
the destination task has been changed to loPollingTch (the default is ActiveTcb).
When the timer times out the message READ DATA will be sent to the task
loPollingTch.

1.14.4 Periodic Timers

A periodic timer sends a timeout message every n milliseconds.
1.14.4.1 Periodic Timer Example

void keyboardMonitor (void)
{
typeMsg * timer;
timer = makeTimer (100L) ;
timer->flags |= PERIODIC;
startTimer (timer) ;
while (TRUE) {
freeMsg (waitMsg (TIMEOUT)) ;
if (kbhit()) processKey();
}
}

The timer is issued only once on task entry. Every 100 milliseconds thereafter the
task will receive a TIMEOUT message. The example above is more easily done
with a pause as shown below. (The example above is presented solely to illustrate
the mechanics of using periodic timers.)

void keyboardMonitor (void)
{
while (TRUE) {
pause (100L) ;
if (kbhit()) processKey();

Periodic timers are used only when precise timing is a requirement. For example,
when generating hardware control signals, periodic timers are essential to insure
that signals are generated on hard boundaries. It is not enough to use a pause
since the pause is re-issued by the application, and, because of the time it takes to
re-issue the pause and the possibility of preemption by higher priority tasks,
precise timing is not guaranteed. Periodic timers, however, are re-issued from
within the timer isr, regardless of system dynamics.

1.15 Time-slicing

Time-slicing is very rarely used in real-time systems. The preferred way of
sharing time between tasks is by using the pause, waitMsg, or waitMail
functions. Time-slicing forces preemption which may not be desirable. The pause
function allows tasks to voluntarily relinquish control without preemption. See the
chapter Time-slicing in The Art of Real-time Programming for more details.

Time-slice tasks share CPU time with other time-slice tasks of the same priority.
Each task is allowed to run for » milliseconds, where n is set in the tcb field
timeSlice, which may be changed dynamically. The default time-slice is 50
milliseconds. Time-slicing behaves as follows:

A task must have time-slicing enabled for it to be time-sliced. Time-slicing is
enabled by setting the TIMESLICE bit in tcb->flags. TIMESLICE is defined in
the Tics header file.

A task enabled for time-slicing will not preempt a task of the same priority that is
disabled for time-slicing.

Tasks will only time-slice with other tasks of the same priority that are time-slice
enabled.

Multiple groups of tasks can time-slice, where all tasks within each group have
the same priority. Note, however, that if the highest priority group never
voluntarily suspends, time-slice tasks of lower priority will not run.

1.15.1 Changing Time-slice Attributes
To change the time-slice flag dynamically, change the flags field in the tcb.

/* Disable time-slicing */
tcb->flags &= ~TIMESLICE;
/* Enable time-slicing */
tcb->flags |= TIMESLICE;

To change the number of milliseconds allocated to the time-slice task change the
teb field timeSlice.

tcb->timeSlice = 200; /* Task gets 200 ms per timeslice */

10

1.16 Critical Regions

A critical region can only be entered by one task at a time and is used for resource
sharing. Consider a multi-tasking system in which all tasks must share a single
printer. If tasks write to the printer whenever they have need to, printout from
different tasks can become interleaved. Access to the printer can be managed with
a critical region manager. To create a critical region manager, start an instance of
task RegionMgr, which is a task defined in the Tics Kernel.

typeTcb * Printer;

Printer = startTask (makeTask (RegionMgr, 0));

Tasks use the print manager as shown below.

enterRegion (Printer);

/* Use printer ... */
exitRegion (Printer) ;

Using the enter and exit region calls serialize access to the printer. If a task calls
enterRegion when another task is in the region, the task will suspend until the
other task performs an exitRegion. Any number of region managers can be
created. When Tics is initialized it creates a region called Dos whose use is
described in a later section.

1.17 Preemption
Preemption occurs when:

An interrupt occurs and the isr sends a message to a task whose priority is higher
than the active task. (In order for the higher priority task to run, _isrRet or
_dosIsrRet must be issued from within the isr).

The active task sends a message to a task that has a higher priority.

A timer times out for a task whose priority is higher than the active task. (This is
the same case as the first item)

The active task's time-slice is up and another time-slice task of the same priority
is ready to run.

1.18 Priority

User priorities range from the lowest priority of LOW USER PRI to the highest
priority of HI USER_PRI. Both are defined in the Tics header file. The default
priority is DEF PRI, defined in the header file. Priorities of lower numerical
value have a higher priority. Most real-time systems run well with all tasks at the
default priority. Only assign high priority to those tasks that have a hard time
constraint. All other tasks should run at the default priority.

Priorities apply to both tasks and messages. Tasks are put into the ready queue
according to their priority while messages are put into each individual task's
message queue according to the message priority. See the chapter Priority in The
Art of Real-time Programming for more details.

11

1.19 Multi-tasking with MS-DOS

MS-DOS and the associated BIOS are non-reentrant. Preempting a task that is in
DOS, and running another task that enters the same region of DOS can cause
errors. This is avoided by avoiding preemption. Preemption is easily avoided by
running all tasks at the same priority with time-slicing disabled. Under these
conditions tasks may use DOS freely without concern.

If however, preemption or time-slicing is required with DOS, the
enterRegion/exitRegion function calls must be used.
enterRegion (Dos) ;

/* Perform DOS operations... */
exitRegion (Dos) ;

If all tasks use DOS services in this way, time-slicing and preemption are

allowed. This approach can be slower since tasks must wait for DOS access, and
there is overhead associated with the enterRegion/exitRegion calls.

1.20 Cooperative Tasks

Cooperative tasks have the following format.

void task(typeMsg * msg)
{
switch (msg->msgNum) {
/* Handle each possible msg that
maybe received with a case statement. */
}
}

1.20.1 Cooperative Tasks Share the Same Stack

The main distinction between cooperative tasks and normal tasks is that all
cooperative tasks share the same stack. Normal tasks are assigned a private stack.
So, for 20 tasks each with a 1K stack, 20K of RAM must be available for stack
space. Conversely, 100 cooperative tasks can share a single 1K stack.

Cooperative tasks have the following characteristics.
All cooperative tasks share the same stack.

A cooperative task is a C function that is called directly when a message has been
received for it.

Cooperative tasks cannot suspend, i.e., they cannot wait on a message, or pause.
The cooperative task is a message processor. For each message that it receives it
takes an action and then returns. In some cases it may have to save its state.

Unlike normal tasks, cooperative tasks must return after processing the message.

Cooperative tasks may only use the a subset of the Tics functions. See the chapter
Cooperative Tasks for details.

A normal task cannot be changed to a cooperative task once the normal task has
been started.

12

Cooperative tasks must not free the message argument; the cooperative task need
only return.

When normal tasks run, the global variable ActiveTcb points to the tcb for the
active task. This is not true for cooperative tasks. The tcb for the cooperative task
is pointed to by ActiveCoopTcbh.

1.20.2 Application of Cooperative Tasks

Cooperative tasks are essential for applications that require a large number of
tasks - typically multiple instances of a few base tasks. Hundreds of tasks can be
started without the normal stack overhead required for each task. Cooperative

tasks are ideal for event driven applications like communications, process control
and the like.

1.20.3 Starting Cooperative Tasks
Cooperative tasks are created by setting the COOP flag in the tcb.

tcb = makeTask (taskA, 0);

/* Select cooperative option */
tcb->flags |= COOP;

startTask (tcb) ;

For more information see the chapter Cooperative Tasks.

1.21 Sending and Receiving Mail

NOTE: Mail should not be used. Mailboxes are only included here for
compatibility with earlier versions. Always use messages as they are much more
flexible and they are the core around which Tics is built.

Sending mail differs from message passing as follows.

No allocation or deallocation of memory is required for mail.
Mail is not queued. Unread data is optionally overwritten.
Sending mail is faster than sending messages.

Mail is sent to mailboxes. Thirty two mailboxes are allowed per task instance.
Each task is allocated 32 mail flags and 3 mailboxes. The number of mailboxes
can be increased up to a maximum of 32 by changing the constant

LEN MAILBOXES which is defined in the Tics header file.

1.211 Mail Example
#define NUM MSGS 100
#define HELLO 1000
typeFreeMsg MsgSpace [NUM MSGS];
void taskA (void)
{
typeMail * mail;
while (TRUE) {
mail = waitMail (HELLO) ;
printf ("Data is %d\n", mail->iData);
freeMail (HELLO) ;
}

13

}

void main ()

{
typeTcb * tcb;
startTics (makeTics (MsgSpace, NUM MSGS)) ;
tcb = makeTask (taskA, 0);
startTask (tcb) ;
mail = makeMail (tcb, HELLO):;
mail->iData = 256;
sendMail (mail) ;
suspend () ;

}

1.21.2 Multiple Task Instance Example

The same task can be started multiple times with the different task numbers.

#define NUM MSGS 100
typeFreeMsg MsgSpace [NUM MSGS];
void monitorLine (void)
{
int ioPort[] = {0x40, 0Ox41, 0x42, 0x43};
int taskNum, reading;
taskNum = ActiveTask->taskNum;
while (TRUE) {

pause (100L) ;
reading = readPort (ioPort[taskNum]) ;
if (reading << 10 || reading > 100) {

error (taskNum) ;
}
}
}

void main ()
{
int 1i;
startTics (makeTics (MsgSpace, NUM MSGS)) ;
for (i = 0; 1 << 4; i++) {
startTask (makeTask (monitorLine, 1i));

}

suspend () ;

}

Four instances of the same task are started with separate task numbers. The task is
generic since the same code is used for all four instances. The task reads the 10
port based on the task number.

1.22 Data Structures

The major Tics data structures are typeMsg and typeTcb, both defined in the Tics
header file. typeFreeMsg is a generic type that populates the free list.

Message queues are doubly linked lists of typeMsg structures. When a message is
sent, a message is allocated from the free list, set with the proper values, and put
into the message queue of the destination task. For complete details of the Tics
data structures see the chapters Tasks and Task Control Blocks, Inter-task
Communication Using Messages, and Inter-task Communication Using Mail.

1.23 Programming Isr's

A basic isr is shown below.

14

#define NEW DATA 1000
extern typeTcb * IoTcb;
void interrupt far IoIsr(void)
{
typeMsg * msg;
char ioChar;
ioChar = inportb (0x50);

msg = makeMsg (IoTcb, NEW DATA, FALSE);
msg->iData = ioChar;

_sendMsg (msg, FALSE, FALSE);

_isrRet();

}

In this example, data is read, a message is made, initialized, and sent. The
_makeMsg, sendMsg combination is the only allowed way to send a message
from within an isr. _isrRet returns from the isr. If a higher priority task is sent a
message from within the isr, _isrRet will suspend the active task, and return to
the higher priority task. When running on the PC under MS-DOS, _dosIsrRet()
must be used instead of _isrRet().

1.24 Timer List

The timer list is a doubly linked list of message structures called timers. When a
timer is started with the pause or startTimer function, a timer is created and
added to the timer list. The startTicCount and ticCountDown fields of the timer
are initially loaded with the timer count. Each time the timer isr is entered, the
ticCountDown field is decremented. When it reaches zero, a TIMEOUT message
is sent to the originator of the timer, which is the senderTcb field of the timer. If
the timer is a periodic timer, the ticCountDown field is reloaded with
startTicCount each time ticCountDown reaches 0.

1.24.1 Differential Timers

The timer list is sorted numerically with the shortest timer at the front of the list.
Furthermore, the timers are differential timers. For example, say that the list is
composed of three timers of duration 10, 20, and 30 system ticks. The list would
be sorted numerically with the 10 tick timer at the front of the list followed by the
20 and the 30 tick timer. However, the count loaded into startTicCount and -
ticCountDown would be 10 ticks for each timer. When the first timer of 10 ticks
has counted down to zero, then only 10 more ticks are required to reach the 20
count required for the second timer. This technique of sorting differential timers
means that only the first timer in the list needs to be decremented.

1.25 Tics Parameter Structure

The Tics parameter structure is created by makeTics and is shown below.

typedef struct structTics {

typeFreeMsg * msgSpace;

int numMsgs;

int flags;

void (* fatalErrorHandler) (char * errMsq);
int timerChipCount;

long uSPerTimerChipCount;

15

} typeTics;

msgSpace points to the free message list. Memory blocks are removed from this
list to create messages, task control blocks, and timers. msgSpace points to an
area of memory that is used as the free memory pool for messages and task
control blocks. This memory pool is used by all tasks in the system. It should be
large enough the handle the worst case system loading. One hundred messages is
a good number to start with. numMsgs tells how many messages of type
typeFreeMsg are contained in the message space pointed to by msgSpace. If
numMSsgs is not large enough, an out of memory error will be generated.

The flags field is currently unused.

fatalErrorHandler points to an error handler function that will be called when a
fatal error is detected.

timerChipCount contains the actual raw count to be loaded into the timer register.
uSPerTimerChipCount contains the number of microseconds that will have
elapsed when the timer chip count of timerChipCount counts down to zero.

1.26 Mailbox Structure

Each task is allocated 3 mailboxes as a default. Tasks can have up to 32
mailboxes. The mailbox structure is defined below.

typedef struct structMail {

int iData;

long 1lData;

void * pData;

struct structTcb * senderTcb;

} typeMail;

iData, [Data, and pData can contain integer, long, or pointer data for mail. Each
task's tcb contains an array of mailbox structures (tcb field mailBoxes). The
mailbox number is used as an index into the mail table to obtain mail data. The
mailFlags field of the tcb is an unsigned long. Each bit is a mail flag. It the bit is
set, then that mailbox has mail. For example, if bit 5 is set, then 7cb-
>mailBoxes[5] has mail data. Note that the mailbox table is only accessed if there
is data associated with the mail. Often mail is sent without data to simply signal
another task.

1.27 The Free Message List

Tics maintains a list of free memory blocks that are allocated when a message,
timer, or task control block is created. The structure is shown below.

typedef struct structFreeMsg {

unsigned long segNum;

struct structFreeMsg * next;

char space[ticsMax (sizeof (typeTcb), sizeof (typeMsqg))];
} typeFreeMsg;

16

seqNum is a sequence number that is assigned every time a memory block is
granted. It is used for timer and message cancellation. next points to the next free
memory block in the singly linked free message list.

1.28 Notes & Caveats

Some Tics function calls are macros, therefore function calls should be enclosed
in braces when used with if statements.

Each normal task instance requires about 1.2K bytes of overhead - 1K for the
stack, and about 220 bytes for the tcb and message queue. The stack size is one of
the fields in the typeTch structure that is returned by makeTask. It is
recommended that the stack size be no less than 1K when running with MS-DOS.

Each cooperative task instance requires about 100 bytes of overhead - no stack or
message queue is required.

Software floating point operations are typically non-reentrant. If tasks can
preempt one another, floating point operations must be protected with
enterRegion, exitRegion. In general all non-reentrant library calls should be
protected by a region when preemption can occur.

The task priority is meaningless for cooperative tasks. Cooperative tasks use a run
to completion paradigm, and communicate via messages. Therefore, only the
message priorities have significance.

Do not use pause within an enterRegion(Dos), exitRegion(Dos) region. The
timer isr will not preempt while the task is in a DOS region and deadlock will
occur.

Mail may only be used for communication between normal tasks; cooperative
tasks may not use mail.

For efficiency, the read operation for mail is unprotected. This means that writing
to a mailbox is an indivisible operation; reading is not. This is not considered a
problem, since there is typically only one reader of mail. The modification to
include read protection is straightforward.

This version of Tics (3.01) disables interrupts when linked lists require updating.
Also, when the timer isr is entered, interrupts are disabled while in the isr. For
very time critical applications this may not be acceptable and we recommend the
Tics State Machine Kernel in these cases, since the State Machine Kernel never
disables interrupts. The Tics 3.01 Kernel is also modifiable so that interrupts are

17

not disabled, however some flexibility is compromised. We plan to cover this
topic in an upcoming book entitled Modifying, Porting, and Embedding the Tics
Kernel.

1.29 Installation, Compiling, and Linking

Standard Tics is comprised of the source files, fics.c and target.c, and the header
files, tics.h and ticsext.h, and ticsmain.h. To build applications, simply include the
appropriate header files, and link tics.c and target.c with your application file(s).
The Extended version includes the files extras.c, ticscom.c, and ticscom.h. See the
readme.doc file on the distribution disk for further details.

1.30 Embedding Tics

Tics is easily embedded because all variable initializations are done at run time;
no compile-time initializations are performed. Various vendors offer products that
allow for embedding C based executable files onto an 86 platform. If your target
is not an 86 family processor, target specific kernel code must be modified (file
target.c), and the C source must be cross compiled for the target processor. If you
have purchased our support package we can help you with porting via email and
phone support.

1.31 Sample Programs

Sample programs are provided for learning. The best way to gain an
understanding of various features of the Tics Kernel is to begin working with the
MS-DOS sample programs.

1.32 Errors

Return codes are documented in the system calls section. When fatal errors occur,
the fatal error handler is invoked. See the readme.doc file for further details.

1.33 Debugging

Because Tics is written in C, it can be used with the standalone C debuggers. Note
that when using Turbo C/C++ 1.01, the standalone Turbo Debugger is required.
The Turbo IDE Debugger can be used with certain restrictions. See the
readme.doc file for further details.

18

1.34 User Level Kernel Interface

User level kernel calls are the most commonly used kernel calls. Most of the
sample programs use user level calls only. If you need more power, generality, or
you need to access the kernel from within an isr, refer to the System Level Kernel
Interface section. System level calls provide more flexibility, but may be more

difficult to use.

19

cancelMsg, cancelTimer

1.34.1.1 Function

Cancel a message, cancel a timer.

1.34.1.2 Syntax

int cancelMsg(typeMsg * msg, long segNum) ;
int cancelTimer (typeMsg * msg, long segNum) ;

1.34.1.3 Remarks

These functions attempt to cancel a message pointed to by msg, with sequence
number seqNum. If the message is in the message queue, it is removed. However,
if the message has already been received or cancelled, it is not removed. If a
message is to be cancelled, a pointer to the message and its sequence number
must be saved prior to sending it.

1.34.1.4 Return Value
Returns TRUE if successful, otherwise FALSE.
1.34.1.5 See Also

sendMsg, startTimer.

1.34.1.6 Example

#define READ 1000
typeMsg * msg;

extern typeTcb * TcbIO;
long segNum;

msg = makeMsg (TcbIO, READ);
segNum = msg->segNum;
sendMsg (msqg) ;

cancelMsg (msg, segNum) ;
msg = makeTimer (1000L) ;
segNum = msg->segNum;
startTimer (msqg) ;
cancelTimer (msg, segNum) ;

20

enterRegion, exitRegion

1.34.1.7 Function

Gain or release exclusive access to a protected region.

1.34.1.8 Syntax

void enterRegion (typeTcb * regionMgrTcb) ;
void exitRegion (typeTcb * regionMgrTcb) ;
1.34.1.9 Remarks

Following the enterRegion call, a task has exclusive access to a protected region,
assuming that all other tasks that require access also use the enterRegion call.
When finished using the region, the task must relinquish ownership by calling
exitRegion.

regionMgrTch points to an instance of task regionMgr. An instance of task
regionMgr is required for each region. regionMgr task instances are started like
any other task instance. See the example below for details. The regionMgr
instance named Dos is started by startTics. Dos is used by MS-DOS tasks that
need exclusive access to MS-DOS calls.

enterRegion(Dos)/exitRegion(Dos) calls are only required when time-slicing is
in effect, or tasks are being run at different priorities. If all tasks are run at the
same priority, and no tasks time-slice, enterRegion(Dos)/exitRegion(Dos) calls
are not required.

1.34.1.10 Return Value
None.
1.34.1.11 See Also

None.

1.34.1.12 Example

/* To protect MS-DOS system calls...*/
enterRegion (Dos) ;

/* DOS system calls here... */
exitRegion (Dos) ;

/* To setup a user declared region... */

typeTcb * UserRegion;

UserRegion=

startTask (makeTask (regionMgr, 0)) ;
/* Now use the region */
enterRegion (UserRegion) ;

/* Perform operations... */
exitRegion (UserRegion) ;

21

exitTics

1.34.1.13 Function

Exit the Tics Kernel and restore the hardware to its original state. For use on MS-
DOS systems only.

1.34.1.14 Syntax

void exitTics (void) ;

1.34.1.15 Remarks

exitTics restores the PC hardware timer chip, the timer isr, and the keyboard isr to

their original state. exitTics should always be called prior to exiting when using
the Tics Kernel under MS-DOS.

1.34.1.16 Return Value
None.

1.34.1.17 See Also
None.

1.34.1.18 Example
/* Exit Tics. */
exitTics () ;

/* Exit to MS-DOS. */
exit (0);

22

freeMail

1.34.1.19 Function
Clear the mail available flag for the mailbox.
1.34.1.20 Syntax

int freeMail (typeMail * mail);
1.34.1.21 Remarks
Each tcb contains 32 mail flag bits; if a bit is set, mail is available for the

corresponding mailbox number. Mailbox numbers range from 0 to 31. freeMail
clears the mail available bit for the mailbox pointed to by mail.

1.34.1.22 Return Value

None.

1.34.1.23 See Also

makeMail, sendMail, rcvMail, waitMail

1.34.1.24 Example

#define IO DATA 12
int rampUpTime;
typeMail * mail;

mail = waitMail (IO_DATA) ;
rampUpTime = mail->iData;
freeMail (mail) ;

}

23

freeMsg

1.34.1.25 Function

Free a message.
1.34.1.26 Syntax

void freeMsg(void * msg);

1.34.1.27 Remarks

freeMsg adds the message pointed to by msg, to the free message list.
1.34.1.28 Return Value

None.

1.34.1.29 See Also

_freeMsg.

1.34.1.30 Example

typeMsg * msg;
msg = rcvMsg();
if (msg != NULL) {freeMsg(msg);}

24

makeMail, sendMail

NOTE: Mail should not be used. Mailboxes are only included here for
compatibility with earlier versions. Always use messages as they are much more
flexible and they are the core around which Tics is built.

1.34.1.31 Function

Make mail, send mail to a task.

1.34.1.32 Syntax

typeMail * makeMail (typeTcb *tcb, mailBoxNum)
typeMail * sendMail (typeMail * mail)

1.34.1.33 Remarks

makeMail creates a mailbox structure with mailbox number mailBoxNum and
destination zch. sendMail sends the mail pointed to by mail. sendMail over-
writes unread mail unless the OVER_WRITE DISABLE bit in the flags field of
the mailbox is set. OVER_WRITE DISABLE is defined in the Tics header file.

1.34.1.34 Return Value

Returns a pointer to the mail structure.
1.34.1.35 See Also

_sendMail, freeMail, rcvMail, waitMail.

1.34.1.36 Example

#define IO DATA 12
typeMail * mail;
typeTcb * TcbA;

mail = makeMail (TcbA, IO DATA);
sendMail (mail) ;

25

makeMsg, sendMsg

1.34.1.37 Function

Make a message, send a message to a task.

1.34.1.38 Syntax

typeMsg * makeMsg(typeTcb * tcb, int msgNum) ;
typeMsg * sendMsg (typeMsg * msgPtr);

1.34.1.39 Remarks

makeMsg creates a message with number msgNum and destination #ch. sendMsg
sends the message pointed to by msgPtr.

1.34.1.40 Return Value

Returns a pointer to the message.
1.34.1.41 See Also
freeMsg.

1.34.1.42 Example
typeMsg * msgPtr;

extern typeTcb * TcbIO, * TcbA;
msgPtr = makeMsg (TcbIO, START);
/* Raise msg priority */
msgPtr->pri = DEF PRI - 1;

/* Change sender */
msgPtr->senderTcb = TcbA;

/* Send the message to ioTask */
sendMsg (msgPtr) ;

26

makeTask, startTask

1.34.1.43 Function

Make a task control block, start task execution.

1.34.1.44 Syntax

typeTcb * makeTask(void (* task) (void), int taskNum);
typeTcb * startTask(typeTcb * tcb);

1.34.1.45 Remarks

makeTask creates a task control block (tcb) for the C function task, and assigns it

the task number taskNum.

makeTask defaults the tcb entries as follows.

Priority is set to DEF PRI (defined in Tics header file).

Time-slicing is disabled.
One message queue is allocated.

Three mailboxes are allocated.

startTask allocates a 1K stack, and schedules the task to run according to its priority.

1.34.1.46 Return Value

Returns a pointer to the tcb.
1.34.1.47 See Also

None.

1.34.1.48 Example

typeTcb * ioTcb;

ioTcb = makeTask (IoTask, 0);
/* Raise task priority */
ioTcb->pri--;

/* Enable time-slicing */
ioTcb->flags |= TIMESLICE;
/* Start task execution */
startTask (1oTcb) ;

27

makeTics, startTics

1.34.1.49 Function

Initialize the Tics Kernel and hardware.
1.34.1.50 Syntax

typeTics * makeTics (typeFreeMsg * msgSpace, int numMsgs) ;
typeTics * startTics (typeTics * ticsInfo);
1.34.1.51 Remarks

These functions must be called before any other Tics function. makeTics creates
a typeTics data structure and returns a pointer to it. MsgSpace points to a block of
memory to be used for message space. numMsgs is the number of messages of
type typeFreeMsg that is represented by the space. The elements of this structure
are defined below with the default values shown in parentheses.

int timerChipCount - the number to be loaded into the timer chip countdown
register. (5966).

long uSPerTimerChipCount - the number of microseconds that will have elapsed
when the counter reaches 0. (5000L).

typeFreeMsg * msgSpace - points to space that Tics will use as its free memory
pool. (User must supply this space).

int numMsgs - the number of messages of type typeFreeMsg that can fit into the
space pointed to by msgSpace. (User must supply this argument).

void (* fatalErrorHandler)(char * errMsg) - a pointer to an error handler that will
be called whenever a fatal error occurs. (Defaults to Tics error handler which is
MS-DOS compatible).

1.34.1.52 Return Value
Returns a pointer to a structure of type typeTics.
1.34.1.53 See Also

None.

1.34.1.54 Example

#define NUM MSGS 200

typeFreeMsg MsgSpace [NUM MSGS] ;

void main ()

{
typeTics * tics;
tics = makeTics (MsgSpace, NUM MSGS) ;
/* Use my fatal error handler */
tics->fatalErrorHandler = myErrorHandler;
/* Set timer isr interval to 10 ms */
tics->timerChipCount *= 2;
tics->uSPerTimerChipCount *= 2L;
startTics (tics);

28

makeTimer, startTimer

1.34.1.55 Function

Make a timer message, start a timer.
1.34.1.56 Syntax

typeMsg * makeTimer (long msTimeout) ;
typeMsg * startTimer (typeMsg * msgPtr);

1.34.1.57 Remarks
makeTimer makes a timer message. startTimer starts the timer countdown. On
timeout, the message TIMEOUT (defined in the Tics header file) is issued to the
destination task after msTimeout milliseconds.
makeTimer defaults the message structure members as follows.

msgNum is TIMEOUT.

destTch is ActiveTcb.
Timer type is one-shot.
1.34.1.58 Return Value

Returns a pointer to the message.
1.34.1.59 See Also

_makeTimer.

1.34.1.60 Example

extern typeTcb * TaskA;
typeMsg * timer;

/* Make timer message */
timer = makeTimer (500L) ;

/* Change sender */
timer->senderTcb = TaskA;
/* Make timer periodic */
timer->flags |= PERIODIC;
/* Start timer countdown */
startTimer (timer) ;

29

pause

1.34.1.61 Function

Suspend task execution for a given number of milliseconds.
1.34.1.62 Syntax

int pause(long msPause) ;

1.34.1.63 Remarks

pause suspends the current task for msPause milliseconds.
1.34.1.64 Return Value

None.

1.34.1.65 See Also

makeTimer, startTimer.

1.34.1.66 Example

void ioTask (void)
{
while (TRUE) {
pause (20L) ;
if (kbhit()) processKey();
}
}

30

rcvMail

1.34.1.67 Function

Returns the mail data in the mailbox.
1.34.1.68 Syntax

typeMail * rcvMail (int mailBoxNum) ;

1.34.1.69 Remarks

If mail is available, revMail returns a pointer to the indicated mailbox number,
otherwise NULL is returned. Mailbox numbers range from 0 to 31.

1.34.1.70 Return Value

If mail is available, revMail returns a pointer to the indicated mailbox, otherwise
NULL is returned.

1.34.1.71 See Also

makeMail, sendMail, freeMail, waitMail

1.34.1.72 Example

#define IO DATA 12

typeMail * mail;

mail = rcvMail (IO _DATA);

if (mail != NULL) {freeMail (mail) ;}

31

rcvMsg

1.34.1.73 Function

Retrieve a specific message from a task's message queue.

1.34.1.74 Syntax

typeMsg * rcvMsg(int msgNum) ;

1.34.1.75 Remarks

revMsg retrieves the next available message from the active task's message queue
with number msgNum. If msgNum equals ANY MSG, and the queue is not
empty, the first message in the queue is returned. If the desired message is not in

the queue, NULL is returned. The message must be freed after use by calling
freeMsg.

1.34.1.76 Return Value

Returns a pointer to the message if the message available, otherwise, NULL is
return.

1.34.1.77 See Also

waitMsg.

1.34.1.78 Example

#define ANALOG DATA 1000
typeMsg * msgPtr;

int data;
msgPtr = rcvMsg (ANALOG DATA) ;
if (msgPtr != NULL) {

data = msgPtr->iData;
freeMsg (msgPtr) ;
}

32

suspend

1.34.1.79 Function

Suspend the active task.
1.34.1.80 Syntax

void suspend (void) ;

1.34.1.81 Remarks

suspend suspends the active task and runs the task at the front of the ready queue.
The suspended task will run again only if a message is sent to it, or a wakeup is
executed.

1.34.1.82 Return Value
None.

1.34.1.83 See Also
wakeup.

1.34.1.84 Example

sendMsg (makeMsqg (TaskA, O

sendMsg (makeMsg (TaskB, 1

sendMsg (makeMsg (TaskC, 2

startTimer (makeTimer (100

suspend () ;

/* Execution will resume here when a
message has arrived or another task
issues a wakeup to this task. */

))
));
))
0L))

33

waitMail

1.34.1.85 Function

Wait for mail.

1.34.1.86 Syntax

typeMail * waitMail(int mailBoxNum);
1.34.1.87 Remarks

waitMail waits for mail to arrive in mailbox number mailBoxNum for the active
task. If mail is available, control is returned immediately, otherwise, the active
task is suspended until mail arrives. Mail must be freed after use by calling
freeMail. Mailbox numbers range from 0 to 31.

1.34.1.88 Return Value

If mail is available, a pointer to the mailbox is returned, otherwise, the active task
is suspended until mail for the indicated mailbox arrives.

1.34.1.89 See Also
sendMail, freeMail, rcvMail

1.34.1.90 Example

#define IO DATA 12
int data;
typeMail * mail;

mail = waitMail (IO_DATA) ;

data = mail->iData;
freeMail (mail) ;

34

waitMsg

1.34.1.91 Function

Wait for a specific message.

1.34.1.92 Syntax

typeMsg * waitMsg(int msgNum) ;

1.34.1.93 Remarks

waitMsg waits for a message with number msgNum to appear in the active task's
queue and returns a pointer to it. If msgNum equals ANY MSG, the first message
in the queue is returned. If a message is available, control is returned immediately,

otherwise, the active task is suspended until a message arrives. The message must
be freed after use by calling freeMsg.

1.34.1.94 Return Value

Returns a pointer to the message.
1.34.1.95 See Also

rcvMsg.

1.34.1.96 Example

typeMsg * msgPtr;

int data;

msgPtr = waitMsg (START) ;
data = msgPtr->iData;
freeMsg (msgPtr) ;

35

wakeup

1.34.1.97 Function

Wake up a suspended task.

1.34.1.98 Syntax
void wakeup (typeTcb * tcb);

1.34.1.99 Remarks

wakeup wakes up the suspended task connected to the task control block #cb.
1.34.1.100 Return Value

None.

1.34.1.101 See Also

suspend.

1.34.1.102 Example

extern typeTcb * TaskA;
wakeup (TaskAd) ;

36

_doslsrRet, _isrRet

1.34.1.103 Function

Return from an MS-DOS isr, return from an isr.
1.34.1.104 Syntax

void _isrRet();

void dosIsrRet();

1.34.1.105 Remarks

_isrRet and _dosIsrRet both check the priority of the active task against the task
at the front of the ready queue. _isrRet always returns to the highest priority task.
_doslsrRet returns to the highest priority task only when the system is not in an
MS-DOS system call. Use _dosIsrRet when running under MS-DOS. These calls
must be the last statement of the isr.

1.34.1.106 Return Value

None.
1.34.1.107 See Also

_isrPreempt.

1.34.1.108 Example

extern typeTcb * IoTcb;
void interrupt far IoIsr(void)
{
typeMsg * msg;
char ioChar;
ioChar = inportb (0x50) ;

msg = makeMsg (IoTcb, NEW DATA, FALSE);
msg->iData = ioChar;

_sendMsg (msg, FALSE, FALSE);
_dosIsrRet();

37

_freeMsg

1.34.1.109 Function

Free a message.

1.34.1.110 Syntax

void _freeMsg(void * msg, int diOpt);
1.34.1.111 Remarks

_freeMsg adds the message pointed to by msg, to the free message list. diOpt is
TRUE if interrupts are to be disabled when required, otherwise interrupts are
assumed to be disabled on entry.

1.34.1.112 Return Value
None.

1.34.1.113 See Also
freeMsg.

1.34.1.114 Example

typeMsg * msg;
msg = rcvMsg();
if (msg != NULL) { freeMsg(msg, TRUE);}

38

_isrPreempt

1.34.1.115 Function
Preempt active task from within an isr.

1.34.1.116 Syntax
void isrPreempt (int diOpt);

1.34.1.117 Remarks

_isrPreempt is typically used from within an isr to preempt the active task so that
when a return from interrupt is performed, control is returned to a higher priority
task that the isr put into the ready queue. If interrupts are explicitly enabled while
in the isr, then diOpt should be TRUE, otherwise diOpt should always be FALSE
when invoking _isrPreempt from within an isr. _isrPreempt preempts the active
task and runs the task at the front of the ready queue even if the active task has a
higher priority. _isrPreempt assumes that the user has made the appropriate
checks and has determined that preemption is required. _isrRet and _dosIsrRet
both check the priority of the active task against the task at the front of the ready
queue. _isrRet always returns to the highest priority task. _dosIsrRet returns to
the highest priority task only when the system is not in an MS-DOS system call.
These two calls are preferred over _isrPreempt and should be used whenever
possible. However, if other considerations beyond the priority of the ready to run
task and the active task are at issue, then _isrPreempt should be used.

1.34.1.118 Return Value

None.
1.34.1.119 See Also

_isrRet, doslsrRet.

1.34.1.120 Example

extern typeTcb * IoTcb;
void interrupt far IoIsr(void)
{
typeMsg * msg;
char ioChar;
ioChar = inportb (0x50);
msg = makeMsg(IoTcb, NEW DATA, FALSE);
msg->iData = ioChar;
_sendMsg (msg, FALSE, FALSE);
if (ActiveTcb->pri > IoTcb->pri &&
notInDos ()) {
_isrPreempt (FALSE) ;
}
}

39

_makeMsg, _sendMsg

1.34.1.121 Function

Make a message, send message to a task.

1.34.1.122 Syntax

typeMsg * makeMsg (typeTcb * tcb, msgNum, int diOpt);
typeMsg * sendMsg (typeMsg * msgPtr, int diOpt, int preeOpt);

1.34.1.123 Remarks

_makeMsg creates a message with number msgNum and destination zch.
_sendMsg sends the message pointed to by msgPtr. diOpt is TRUE if interrupts
are to be disabled when required, otherwise interrupts are assumed to be disabled
on entry. If interrupts are explicitly enabled during isr execution, then diOpt
should be TRUE, otherwise diOpt should always be FALSE when invoked from
within an isr. preeOpt is TRUE if the active task is to be preempted if necessary.
preeOpt should always be FALSE when invoked from within an isr.

1.34.1.124 Return Value
Returns a pointer to the message.
1.34.1.125 See Also

None.

1.34.1.126 Example

extern typeTcb * IoTask;

extern typeTcb * TaskA;

typeMsg * msgPtr;

msgPtr = makeMsg(IoTask, START,
/* Raise msg priority */
msgPtr->pri = DEF PRI - 1;

/* Change sender */
msgPtr->senderTcb = TaskA;

/* Send the message */

_sendMsg (msgPtr, TRUE, TRUE);

TRUE) ;

40

_makeTimer

1.34.1.127 Function

Make a timer message.
1.34.1.128 Syntax
typeMsg * makeTimer(long ticCount, int diOpt);
1.34.1.129 Remarks
_makeTimer makes a timer message. ticCount is the number of system tics. A
system tic occurs each time the timer isr is entered. If interrupts are explicitly
enabled during isr execution, then diOpt should be TRUE, otherwise diOpt should
always be FALSE when invoked from within an isr.
_makeTimer defaults message structure members as follows.

msgNum is TIMEOUT.

destTch is ActiveTcb.

Timer type is one-shot.

1.34.1.130 Return Value
Returns a pointer to the message.
1.34.1.131 See Also

makeTimer.

1.34.1.132 Example

extern typeTcb * TaskA;

typeMsg * timer;

/* Make timer message */

timer = makeTimer (500L, TRUE);
/* Change sender */
timer->senderTcb = TaskA;

/* Make timer periodic */
timer->flags |= PERIODIC;

/* Start timer countdown */
startTimer (timer) ;

41

_rcvMsg

1.34.1.133 Function

Retrieve a message from a task's message queue.

1.34.1.134 Syntax

typeMsg * rcvMsg(typeTcb * tcb, int msgQNum, int msgNum, int diOpt, int
remOpt) ;

1.34.1.135 Remarks

_rcvMsg gets the message with number msgNum and message queue number
msgQONum from tch. If msgNum equals ANY MSQG, the first message in the
queue is returned, otherwise the requested message is returned. If remOpt is
TRUE, the message is removed from the queue, otherwise, the message is left in
the queue. This option is useful for checking the queue without removing
messages. In all cases NULL is returned if the desired message is not in the
queue. diOpt is TRUE if interrupts are to be disabled when required, otherwise
interrupts are assumed to be disabled on entry. If interrupts are explicitly enabled
during isr execution, then diOpt should be TRUE, otherwise diOpt should always
be FALSE when invoking _revMsg from within an isr. The message must be
freed after use by calling freeMsg or _freeMsg.

1.34.1.136 Return Value

Returns a pointer to the message or NULL if the requested message is not
available.

1.34.1.137 See Also

rcvMsg
1.34.1.138 Example

/* Get msg 5 from msg queue 0 for the active task. */
typeMsg * msgPtr;
msgPtr = rcvMsg(ActiveTcb, 0, 5, TRUE, TRUE);

4

_sendMail

1.34.1.139 Function

Send mail to a task.

1.34.1.140 Syntax

void sendMail (typeMail * mail, int diOpt, int preeOpt)

1.34.1.141 Remarks

_sendMail sends the mail pointed to by mail. _sendMail over-writes unread mail
unless the OVER_WRITE DISABLE bit in the flags field of the mailbox is set.
OVER WRITE DISABLE is defined in the Tics header file. diOpt is TRUE if
interrupts are to be disabled when required, otherwise interrupts are assumed to be

disabled on entry. preeOpt is TRUE if the active task is to be preempted if
necessary.

1.34.1.142 Return Value
None.

1.34.1.143 See Also
sendMail

1.34.1.144 Example

#define IO DATA 12
typeMail * mail;
typeTcb * TcbA;

mail = makeMail (TcbA, IO DATA);
sendMail (mail) ;

43

_waitMail

1.34.1.145 Function

Wait for mail.

1.34.1.146 Syntax

typeMail * waitMail (int mailBoxNum, int diOpt)

1.34.1.147 Remarks

_waitMail waits for mail to arrive in mailbox number mailBoxNum for the active
task. If mail is available, control is returned immediately, otherwise, the active
task is suspended until mail arrives. diOpt is TRUE if interrupts are to be disabled

when required, otherwise interrupts are assumed to be disabled on entry. Mail
must be freed after use by calling freeMail. Mailbox numbers range from 0 to 31.

1.34.1.148 Return Value.

Returns a pointer to the mailbox.
1.34.1.149 See Also
_sendMail

1.34.1.150 Example

#define IO DATA 12
int data;
typeMail * mail;

mail = waitMail (IO DATA, TRUE) ;

data = mail->iData;
freeMail (mail) ;

44

_waitMsg

1.34.1.151 Function
Wait for a specific message in a specific message queue.

1.34.1.152 Syntax

typeMsg *
~waitMsg (int msgQNum, int msgNum, int diOpt, int remOpt);

1.34.1.153 Remarks

_waitMsg waits for a message with number msgNum to appear in the message
queue msgQNum and returns a pointer to it. If a message is available, control is
returned immediately, otherwise, the active task is suspended until a message
arrives. If msgNum equals ANY MSG, the first message that arrives in the queue
is returned, otherwise the requested message is returned as soon as it arrives.
diOpt must be FALSE if interrupts are disabled when the call is made, otherwise,
it must always be TRUE. If remOpt is TRUE, the message is removed from the
queue, otherwise, the message is left in the queue. This option is useful for
checking the queue without removing messages. The message must be freed after
use by calling freeMsg or _freeMsg.

1.34.1.154 Return Value

Returns a pointer to the message.
1.34.1.155 See Also

waitMsg.

1.34.1.156 Example

#define MSG1 1000

#define MSG2 1001

typeMsg * msgPtr;

/* Wait for the arrival of any msg, but

do not remove it from the queue */

_waitMsg (MSGQ, ANY MSG, TRUE, FALSE);

/* Now use rcvMsg to see if MSGl or MSG2 has arrived */

if (msgPtr = rcvMsg(ActiveTcb, MSGQ, MSGl, TRUE, TRUE) != NULL) {
processMsgl (msgPtr) ;
freeMsg (msgPtr) ;

}

if (msgPtr = rcvMsg(ActiveTcb, MSGQ, MSG2, TRUE, TRUE) != NULL) {
processMsg2 (msgPtr) ;
freeMsg (msgPtr) ;

}

45

_wakeup

1.34.1.157 Function

Wake up a suspended task.

1.34.1.158 Syntax

void _wakeup(typeTcb * tcb, int diOpt);
1.34.1.159 Remarks

_wakeup wakes up the suspended task connected to the task control block #ch.
diOpt i1s TRUE 1if interrupts are to be disabled when required, otherwise interrupts
are assumed to be disabled on entry.

1.34.1.160 Return Value
None.

1.34.1.161 See Also
suspend.

1.34.1.162 Example

extern typeTcb * TaskA;
_wakeup (TaskA, TRUE);

46

waitTimedMsg

1.34.1.163 Function

Wait for a message. If the message does not arrive within the indicated number of
milliseconds, wake the waiting task with a TIMEOUT message.

1.34.1.164 Syntax
typeMsg * waitTimedMsg (int msgNum, long timeout);

1.34.1.165 Remarks

This function performs a waitMsg function call for message number msgNum. If
the message does not arrive within timeout milliseconds, the waiting task is sent a
TIMEOUT message. The function cancels the timer if the message arrives in
time.

1.34.1.166 Return Value

Returns a pointer to the TIMEOUT message or the expected response, whichever
arrives first.

1.34.1.167 See Also
None.

1.34.1.168 Example
#define DATA 1000

typeMsg * msg;
msg = waitTimedMsqg (DATA, 1000L);
switch (msg->msgNum) {
case DATA:
processData (msg) ;
break;
case TIMEOUT:

handleTimeout () ;
break;

}
freeMsg (msqg) ;

47

yield

1.34.1.169 Function

Voluntarily relinquish control so that other tasks can run.
1.34.1.170 Syntax

void yield(void);

1.34.1.171 Remarks

yield suspends the current task so that other tasks can run. yield is typically used
to share time between two or more tasks.

1.34.1.172 Return Value
None.
1.34.1.173 See Also

None.
1.34.1.174 Example

void ioTask (void)
{
while (TRUE) {
readIODatal() ;
yield();
}
}
void keyboardTask (void)
{
while (TRUE) {
if (kbhit()) {processKey();}
yield();
}
}

The two tasks above share time by first doing their work, and then yielding so that
the other task can run.

48

getMem, _getMem

1.34.1.175 Function

Allocate a block of memory.
1.34.1.176 Syntax

void * getMem(typeMem * * memPtr);
void * getMem(typeMem * * memPtr, int diOpt);

1.34.1.177 Remarks

These functions return a block of memory from the memory pool specified by
memPtr. The memory pool must first be created by makeMem. _getMem is
useful when memory must be allocated from within an isr when interrupts are
disabled. A TRUE diOpt argument indicates that interrupts are already disabled.

1.34.1.178 Return Value

Returns a pointer to the requested block of memory. If no memory is available, a
fatal error is generated.

1.34.1.179 See Also

makeMem, putMem.

1.34.1.180 Example

#define DATA 1000

extern typeMem * MemPoolA;
extern typeTcb * TcbA;
typeMsg * msg;

msg = makeMsg (TcbA, DATA);

msg->pData = getMem (&MemPoolA) ;
sendMsg (msqg) ;

49

makeMem, _makeMem

1.34.1.181 Function

Create a pool of fixed size memory blocks.
1.34.1.182 Syntax

typeMem * makeMem (typeMem * memMgr, void * memPtr,
int poolSize, int blkSize);

typeMem * makeMem (typeMem * memMgr, void * memPtr,
int poolSize, int blkSize, int diOpt);

1.34.1.183 Remarks

These functions create a pool of fixed size memory blocks. Any number of pools
may be created with successive calls to either of these functions. Each memory
block will be b/kSize bytes in length. The memory blocks are created from a caller
supplied buffer pointed to by memPtr which is poolSize bytes in length. A TRUE
diOpt argument indicates that interrupts are already disabled. memMgr is a
memory management structure that is filled in by these functions.

1.34.1.184 Return Value

Returns a pointer to a memory management structure of type typeMem.
1.34.1.185 See Also

getMem, putMem.

1.34.1.186 Example

#define NUM MSGS 100

#define LEN MEM POOL 4096
typeFreeMsg MsgSpace [NUM MSGS];
typeMem * MemPool;

char MemPoolSpace [LEN MEM POOL] ;

void main ()
{

typeTics * tics;

tics = makeTics (MsgSpace, NUM MSGS) ;
startTics (tics);

startTask (makeTask (taskA, 0));

MemPool =
makeMem (MemPoolSpace, LEN MEM POOL, 128);

suspend () ;

50

putMem, _putMem

1.34.1.187 Function

Free a block of memory.

1.34.1.188 Syntax

void putMem (typeMem * * memPtr, void * blkPtr);
void putMem(typeMem * * memPtr, void * blkPtr, int diOpt);

1.34.1.189 Remarks

These functions release the memory block pointed to by blkPtr back to the
memory pool specified by memPtr. The memory pool must first be created by
makeMem. putMem is useful when memory must be freed from within an isr

when interrupts are disabled. A TRUE diOp¢ argument indicates that interrupts
are already disabled.

1.34.1.190 Return Value

None.
1.34.1.191 See Also

makeMem.

1.34.1.192 Example

#define DATA 1000
extern typeMem * MemPoolA;

msg = waitMsg (DATA) ;
processData (msg->pData) ;
putMem (&MemPoolA, msg->pData) ;
sendMsg (msqg) ;

51

Index

cancelMsg, cancelTimer...................... 20
CooperativeTasks........cccceeveerieenineennns 12
Critical Regions..........ccccoeevevveeniiennnnns 11
doSISTREt ..o 37
enterRegion, exitRegion............c.ceue. 21
EXITICS. oo 22
freeMail.....ccooovenieniiiinii 23
TEEMSE.ceieiiieeieeeiieee e 24, 38
GetMEM...ooiiiiiiiiice 49
IS 14
1STPreempt.......cccoeeevveeciiiieeeeeeee, 39
ISTR@L. ..o 37
Mail..cooiieiee e 13
MailboX...ccvevieiirieiieieneeeeec e

SHruCture.......eeovvverieenieiieeeeeee 16
makeMail........cccoeeveiiiiiiiiieee e, 25
makeMem.........cocevvevieninienieceeee, 50
100F:1 S] SR 26, 40
makeTask......ccoooeveniininiiini, 27
MakeTICS.....eviieniiiieiiiiieeeeee 28
makeTimer........ccovvvvvvieeeeenieieenie, 29, 41
Memory Management Functions......... 49
MESSAZE...ceeeierieeeeiiieeeeiiee e e iree e

Free List....ooveeneniinieiiiceiee e, 16

Freeing......ccoceevvvveeciiiiieeeeeiiieeeees 6

Inspecting the Queue............c.ccuee..e. 5

NUMDETS. ..o 8

Replying to.....cocveevveiiiieieeiieieee 8

Sending Data with..........cccccveennennn. 5

Timed Wait......ccocoeiiiiiiiiiiiiiieeee 7

Wait for Multiple.........cccceeeevinnnnnne. 6

Waiting for......cceevvieeviieeeiiieeee e, 5

Waiting for any........cccceeeeeeeeiieeennnne. 5
MS-DOS....ooiiiiiiieeeeeeeeeen 12
PAUSE...eeeeeiiieeeeeireeeeeeireeeeerarreeeennaeeeens 30
Preemption........cccecvevieeviiieeiciiieeen. 11
Priority....cccoeeeeiieeiieeeeee e 11
Programmer's Guide............cccceerveenneenns 3
PULMEML.coiiiiiiiiiiiieeeee e, 51
reVMail....oooeiiiiiiiee e, 31
TCVMSE. i 32,42
sendMail........coooiiiiiiiiinii, 43
SENAMSE. ..ot 26, 40
startTask......cocooveeniiiniiiis 27

52

StATtTICS. .eeeeieeeireeeie e 28
StArtTIMer....cveeeieiieeeeeeee e 29
SUSPENA....eiiiiiieeiieeeiie et 33
TaSK..uii i
AIDULES. ... 4
INStances......cooevvveeeevciieeeeiiieeeeeen 14
Source Format........cccccceevvveennnnnneen.. 3
Starting.......cceevveeeeieeeeiieeeriee e 3
Task Switching.......cccccocevviniininicnene. 5
TCD. et
FIags...ccooueeeeiieeieeeee e, 4
1.15Time-slicing.........ccccveevievereennenennn. 10
Changing Attributes.............ccceeenees 10
TIMET ..t
Differential..........c.cccoveveiieeiriinninenn. 15
55] TSR 15
Modifying Attributes..........cc.ceeeneeee. 9
Periodic (Continuous)...........cccceeennee. 9
Starting.......cceeeeeeeiierieeieeeiee e 8
TIMETS..eeeeeiieeeiie e 8
waltMail.........cccovvvviiiiieeeeeeee 34, 44
WaAItMSEZ...oovieiiieiieeieeeece e 35, 45
waitTimedMSg.......cccovevevviieeeeeeiiieen. 47
WaAKEUD. .eeveeiiecieeiieeiiee e 36, 46
Vield. oo 48
Yielding....ocoooeoeeniieiieiieiiieeeeee 5

53

	1Programmer's Guide
	1.1Introduction
	1.2Task Format
	1.3Starting Tasks
	1.4Hello World Example
	1.5Task Attributes
	1.5.1Tcb Flags

	1.6Task Switching
	1.6.1Yielding
	1.6.1.1Waiting for a Message
	1.6.1.2Inspecting the Message Queue
	1.6.1.3Waiting forAny Message

	1.7Sending Data with Messages
	1.8Freeing Messages
	1.9Waiting for Multiple Messages
	1.9.1Inter-task Communication Example

	1.10Timed Wait for Message
	1.11Responding to Messages
	1.12Canceling Timers and Messages
	1.13Message Numbers
	1.14Timers
	1.14.1Pause
	1.14.2Starting a Timer
	1.14.3Modifying Timer Attributes
	1.14.4Periodic Timers
	1.14.4.1Periodic Timer Example

	1.15Time-slicing
	1.15.1Changing Time-slice Attributes

	1.16Critical Regions
	1.17Preemption
	1.18Priority
	1.19Multi-tasking with MS-DOS
	1.20 Cooperative Tasks
	1.20.1Cooperative Tasks Share the Same Stack
	1.20.2Application of Cooperative Tasks
	1.20.3Starting Cooperative Tasks

	1.21Sending and Receiving Mail
	1.21.1Mail Example
	1.21.2Multiple Task Instance Example

	1.22Data Structures
	1.23Programming Isr's
	1.24Timer List
	1.24.1Differential Timers

	1.25Tics Parameter Structure
	1.26Mailbox Structure
	1.27The Free Message List
	1.28Notes & Caveats
	1.29Installation, Compiling, and Linking
	1.30Embedding Tics
	1.31Sample Programs
	1.32Errors
	1.33Debugging
	1.34User Level Kernel Interface
	1.34.1.1Function
	1.34.1.2Syntax
	1.34.1.3Remarks
	1.34.1.4Return Value
	1.34.1.5See Also
	1.34.1.6Example
	1.34.1.7Function
	1.34.1.8Syntax
	1.34.1.9Remarks
	1.34.1.10Return Value
	1.34.1.11See Also
	1.34.1.12Example
	1.34.1.13Function
	1.34.1.14Syntax
	1.34.1.15Remarks
	1.34.1.16Return Value
	1.34.1.17See Also
	1.34.1.18Example
	1.34.1.19Function
	1.34.1.20Syntax
	1.34.1.21Remarks
	1.34.1.22Return Value
	1.34.1.23See Also
	1.34.1.24Example
	1.34.1.25Function
	1.34.1.26Syntax
	1.34.1.27Remarks
	1.34.1.28Return Value
	1.34.1.29See Also
	1.34.1.30Example
	1.34.1.31Function
	1.34.1.32Syntax
	1.34.1.33Remarks
	1.34.1.34Return Value
	1.34.1.35See Also
	1.34.1.36Example
	1.34.1.37Function
	1.34.1.38Syntax
	1.34.1.39Remarks
	1.34.1.40Return Value
	1.34.1.41See Also
	1.34.1.42Example
	1.34.1.43Function
	1.34.1.44Syntax
	1.34.1.45Remarks
	1.34.1.46Return Value
	1.34.1.47See Also
	1.34.1.48Example
	1.34.1.49Function
	1.34.1.50Syntax
	1.34.1.51Remarks
	1.34.1.52Return Value
	1.34.1.53See Also
	1.34.1.54Example
	1.34.1.55Function
	1.34.1.56Syntax
	1.34.1.57Remarks
	1.34.1.58Return Value
	1.34.1.59See Also
	1.34.1.60Example
	1.34.1.61Function
	1.34.1.62Syntax
	1.34.1.63Remarks
	1.34.1.64Return Value
	1.34.1.65See Also
	1.34.1.66Example
	1.34.1.67Function
	1.34.1.68Syntax
	1.34.1.69Remarks
	1.34.1.70Return Value
	1.34.1.71See Also
	1.34.1.72Example
	1.34.1.73Function
	1.34.1.74Syntax
	1.34.1.75Remarks
	1.34.1.76Return Value
	1.34.1.77See Also
	1.34.1.78Example
	1.34.1.79Function
	1.34.1.80Syntax
	1.34.1.81Remarks
	1.34.1.82Return Value
	1.34.1.83See Also
	1.34.1.84Example
	1.34.1.85Function
	1.34.1.86Syntax
	1.34.1.87Remarks
	1.34.1.88Return Value
	1.34.1.89See Also
	1.34.1.90Example
	1.34.1.91Function
	1.34.1.92Syntax
	1.34.1.93Remarks
	1.34.1.94Return Value
	1.34.1.95See Also
	1.34.1.96Example
	1.34.1.97Function
	1.34.1.98Syntax
	1.34.1.99Remarks
	1.34.1.100Return Value
	1.34.1.101See Also
	1.34.1.102Example
	1.34.1.103Function
	1.34.1.104Syntax
	1.34.1.105Remarks
	1.34.1.106Return Value
	1.34.1.107See Also
	1.34.1.108Example
	1.34.1.109Function
	1.34.1.110Syntax
	1.34.1.111Remarks
	1.34.1.112Return Value
	1.34.1.113See Also
	1.34.1.114Example
	1.34.1.115Function
	1.34.1.116Syntax
	1.34.1.117Remarks
	1.34.1.118Return Value
	1.34.1.119See Also
	1.34.1.120Example
	1.34.1.121Function
	1.34.1.122Syntax
	1.34.1.123Remarks
	1.34.1.124Return Value
	1.34.1.125See Also
	1.34.1.126Example
	1.34.1.127Function
	1.34.1.128Syntax
	1.34.1.129Remarks
	1.34.1.130Return Value
	1.34.1.131See Also
	1.34.1.132Example
	1.34.1.133Function
	1.34.1.134Syntax
	1.34.1.135Remarks
	1.34.1.136Return Value
	1.34.1.137See Also
	1.34.1.138Example
	1.34.1.139Function
	1.34.1.140Syntax
	1.34.1.141Remarks
	1.34.1.142Return Value
	1.34.1.143See Also
	1.34.1.144Example
	1.34.1.145Function
	1.34.1.146Syntax
	1.34.1.147Remarks
	1.34.1.148Return Value.
	1.34.1.149See Also
	1.34.1.150Example
	1.34.1.151Function
	1.34.1.152Syntax
	1.34.1.153Remarks
	1.34.1.154Return Value
	1.34.1.155See Also
	1.34.1.156Example
	1.34.1.157Function
	1.34.1.158Syntax
	1.34.1.159Remarks
	1.34.1.160Return Value
	1.34.1.161See Also
	1.34.1.162Example
	1.34.1.163Function
	1.34.1.164Syntax
	1.34.1.165Remarks
	1.34.1.166Return Value
	1.34.1.167See Also
	1.34.1.168Example
	1.34.1.169Function
	1.34.1.170Syntax
	1.34.1.171Remarks
	1.34.1.172Return Value
	1.34.1.173See Also
	1.34.1.174Example
	1.34.1.175Function
	1.34.1.176Syntax
	1.34.1.177Remarks
	1.34.1.178Return Value
	1.34.1.179See Also
	1.34.1.180Example
	1.34.1.181Function
	1.34.1.182Syntax
	1.34.1.183Remarks
	1.34.1.184Return Value
	1.34.1.185See Also
	1.34.1.186Example
	1.34.1.187Function
	1.34.1.188Syntax
	1.34.1.189Remarks
	1.34.1.190Return Value
	1.34.1.191See Also
	1.34.1.192Example

