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Abstract

An unmanned aerial vehicle (UAV) is an unpiloted aircraft which can either be remotely controlled
or fly autonomously based on pre-programmed flight plans. Unmanned aerial vehicles are often
used in military applications for missions that are too dull, dirty, or dangerous for manned
aircraft. They are also used in a growing number of civil applications such as aerial photography.

Rotating wing (or helicopter) UAVs have the advantage above fixed wing UAVs that they
are able to take off and land vertical, and that it is possible to hover at a fixed point. One very
successful design for smaller UAVs is an helicopter with four horizontal rotors and no tailrotor,
a such called quadrotor. Quadrotors have the advantage that they can be controlled by varying
the speed of the rotors and thus fixed-pitch blades can be used which simplifies the design and
control of the vehicle. Secondly, the use of four rotors allows each individual rotor to have a
smaller diameter than the equivalent helicopter rotor, for a given vehicle size, allowing them to
store less kinetic energy during flight.

In order to do autonomous flight with a quadrotor an accurate estimation of the current
position of the vehicle is required, In outdoor situations a Global Position System (GPS) receiver
can be used to measure velocity and position with respect to the earth. However the use of GPS is
not possible in indoor environments. Therefore an alternative measurement of position is required
indoor. A straightforward approach would be the double integration of the accelerometers
measurements of an Inertial Measurement Unit (IMU), this is however not possible because not
only the body acceleration is measured, but also the gravitational vector, the accelerations due
to rotation and a bias.
In this work it is proposed to combine three gyroscopes, three accelerometers and three mag-
netometers of an IMU with infrared sensors to achieve accurate state estimation. This tightly
coupled sensor integration allows estimation of all the states of the system and the biases of both
the gyroscopes and accelerometers and estimation of all states of the quadrotor. The relationships
between the measurements and states are described by non-linear equations, therefore the
Extended Kalman Filter (EKF) is used to perform state estimation.

To validate this approach, first the state estimation is tested in simulation. Subsequently,
a quadrotor UAV is built to perform flight tests and test the filter with real measurements.

The simulations show that using six infrared sensors in orthogonal directions, this tightly
coupled sensor integration can accurately track the states of the system. Also the biases of both
the gyroscopes and accelerometers can be correctly estimated. The filter is still observable using
a minimum of four sensors in any direction, however for accurate tracking a minimum of five
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vi Abstract

infrared sensors are preferred. Due to the linearisations in the EKF the result is not optimal,
but results of the filtering can be improved by tuning the initial settings of the process and
measurement noises.

A quadrotor UAV is built to be able to do flight test, equipped with three gyroscopes,
three accelerometers and three magnetometers and six infrared sensors. Onboard the fixed
point processor of the quadrotor filtering and control is implemented, which stabilises the
attitude angles of the quadrotor. The attitude feedback allows even inexperienced pilots to fly
the quadrotor. Measurements in a real-world test environment show that the state estimation
algorithm is stable and able to give an estimate of the states.
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Abstract vii

”In theory there is no difference between theory and practice. In practice there is.”

Yogi Berra
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φ̇ Roll rate in the earth reference frame [rad/s]

φ̇d Desired roll rate in the earth reference frame [rad/s]

ψ̇ Yaw rate in the earth reference frame [rad/s]

ψ̇d Desired yaw rate in the earth reference frame [rad/s]

θ̇ Pitch rate in the earth reference frame [rad/s]

θ̇d Desired pitch rate in the earth reference frame [rad/s]

ν Air viscosity at 20◦ Celsius [Pa s]
= 1.810−5 Pa s

Ω Propeller speed [rad/s]

ΩH Propeller speed at hoover [rad/s]

=
√

Wprop

b

Ωr Residual propellers rotational speed [rad/s]
= −Ω1 + Ω2 − Ω3 + Ω4

Ωtot Total propellers rotational speed [rad/s]
= Ω1 + Ω2 + Ω3 + Ω4

φ Roll angle in the earth reference frame [rad]

φd Desired roll angle in the earth reference frame [rad]

φd Desired yaw angle in the earth reference frame [rad]

ψ Yaw angle in the earth reference frame [rad]

ρ Air density at 20◦ Celsius [kg/m3]
= 1.293 kg/m3

σ Solidity ratio (rotor fill ratio) [rad−1]
= Nc

πR

θ Pitch angle in the earth reference frame [rad]

θ0 Pitch of incidence [rad]

θd Desired pitch angle in the earth reference frame [rad]

θtw Twist pitch [rad]

Latin Symbols
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xxii Nomenclature

C̄d Airfoil drag coefficient of the section corresponding to the 70 percent radial station
[-]

∆t Sampling period [s]
= 1/100 s

ṗ Roll rate acceleration in the body reference frame [rad/s]

q̇ Pitch rate acceleration in the body reference frame [rad/s]

ṙ Yaw rate acceleration in the body reference frame [rad/s]

u̇ Horizontal acceleration in forward direction in the body reference frame [m/s2]

v̇ Horizontal acceleration in right sideward direction in the body reference frame
[m/s2]

ẇ Vertical acceleration in downward direction in the body reference frame [m/s2]

ẋ Horizontal velocity in forward direction in the earth reference frame [m/s]

ẋd Desired horizontal velocity in forward direction in the earth reference frame [m/s]

ẏ Horizontal velocity in right sideward direction in the earth reference frame [m/s]

ẏd Desired horizontal velocity in right sideward direction in the earth reference frame
[m/s]

ż Vertical velocity in downward direction in the earth reference frame [m/s]

żd Desired vertical velocity in downward direction in the earth reference frame [m/s]

λ Inflow ratio [-]
= vi+ż

ΩHR

µ Advance ratio [-]

= V̄
ΩHR

A Propeller disk area [m2]
= πR2

a Lift slope

Au Aerodynamic area [m2]

b Thrust factor in hover [N s2]

Cu,Cv,Cw Translational drag coefficients [-]

d Drag factor in hover [N m s2]

ess Steady state error

g Gravity constant
= 9.8065 m/s2

h Vertical distance between CoG and propellers plan [m]

I Identity matrix

Ixx, Iyy, Izz Inertia components [kg m2]

J Inertia matrix

Jm Rotor inertia [kg m2]

KD Derivative gain

KI Integral gain

KP Proportional gain

l Arm length [m]

m Total mass [kg]

Mp Maximum overshoot

p Roll rate in the body reference frame [rad/s]

q Pitch rate in the body reference frame [rad/s]

R Propeller radius [m]

r Yaw rate in the body reference frame [rad/s]
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Nomenclature xxiii

tr Rise time

V Sideways velocity [m/s]
=

√
u2 + v2

vi Inflow velocity [m/s]

=

√

− 1
2
V 2 +

√

(

1
2
V 2

)2
+

(

Wprop

2ρA

)2

Wprop Weight of the quadrotor per propeller [N]
= mg

4

x Horizontal position in forward direction in the earth reference frame [m]

xd Desired horizontal position in forward direction in the earth reference frame [m]

y Horizontal position in right sideward direction in the earth reference frame [m]

yd Desired horizontal position in right sideward direction in the earth reference frame
[m]

z Vertical position in downward direction in the earth reference frame [m]

zd Desired vertical position in downward direction in the earth reference frame [m]

u Horizontal velocity in forward direction in the body reference frame [m/s]

v Horizontal velocity in right sideward direction in the body reference frame [m/s]

w Vertical velocity in downward direction in the body reference frame [m/s]
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Acronyms

AAHRS Attitude and Heading Reference System

AHRS Attitude and Heading Reference System

ANU Australia National University

CCD Charge-Coupled Device

CEA Commissariat l’Énergie Atomique

CoG Centre of Gravity

DC Direct Current

DCAV Dynamics and Control of Aerospace Vehicles

DGPS Differential GPS

DoF Degrees Of Freedom

EEMCS Electrical Engineering, Mathematics and Computer Science

EKF Extended Kalman Filter

EPFL Ecole Polytechnique Fèdèrale de Lausanne

ESL Embedded System Lab

FBL FeedBack Linearisation

FET Field Effect Transistor

GPS Global Positioning System

HKF Hybrid Kalman Filter

IEKF Iterated Extended Kalman Filter

ISM Integral Sliding Mode

IGE In Ground Effect

IMU Inertial Measurement Unit
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xxvi Acronyms

INS Inertial Navigation System

LQR Linear-Quadratic Regulator

MAVLab Micro Arial Vehicle Lab

MARG Magnetic, Angular Rate, and Gravity

MEMS Micro-machined ElectroMechanical Systems

MRML Modified Recursive Maximum Likelihood

NDI Non-linear Dynamic Inversion

NN Neural Network

OGE Out of Ground Effect

OS4 Omnidirectional Stationary Flying OUtstretched Robot

PID Proportional-Integral-Derivative

PI Proportional-Integral

PD Proportional-Derivative

PCB Printed Circuit Board

PCH Pseudo-Control Hedging

PPM Pulse-Position Modulation

PWM Pulse-Width Modulation

RC Remote Control

RML Recursive Maximum Likelihood

RL Reinforcement Learning

SMC Sliding Mode Control

SPI Serial Peripheral Interface

SODAR SOnic Detection And Ranging

SLAM Simultaneous Localization And Mapping

STARMAC Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control

SVD Singular Value Decomposition

TU Delft Delft University of Technology

TWI Two-wire Serial Interface

UKF Unscented Kalman Filtering

UAV Unmanned Aerial Vehicle

V/STOL Vertical/Short Take Off and Landing

VTOL Vertical Take Off and Landing
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Chapter 1

Introduction

An unmanned aerial vehicle (UAV) is an unpiloted aircraft which can either be remotely controlled
or fly autonomously based on pre-programmed flight plans. Unmanned aerial vehicles are often
used in military applications for missions that are too dull, dirty, or dangerous for manned
aircraft. They are also used in a growing number of civil applications such as aerial photography.

Rotating wing (or helicopter) UAVs have the advantage above fixed wing UAVs that they
are able to take off and land vertical, and that it is possible to hover at a fixed point. One very
successful design for smaller UAVs is an helicopter with four horizontal rotors and no tailrotor,
a such called quadrotor. Quadrotors have the advantage that they can be controlled by varying
the speed of the rotors and thus fixed-pitch blades can be used which simplifies the design and
control of the vehicle. Secondly, the use of four rotors allows each individual rotor to have a
smaller diameter than the equivalent helicopter rotor, for a given vehicle size, allowing them to
store less kinetic energy during flight.

At the Delft University of Technology (TU Delft) recently interest is gained in the quadro-
tor UAV design, starting with a Bachelor of Science design exercise in 2007 at the faculty of
Aerospace Engineering: The Insight project [Thus et al., 2007]. The goal of this design exercise
was to develop an UAV which can be used in life threatening situations to explore terrains and
buildings before entering them. In the first phase of the project a quadrotor was designed for this
tasks. After the success of the first phase it was decided to continue the project and built the
quadrotor as designed with the help of the Micro Arial Vehicle Lab (MAVLab), and successive
steps were made. However the project was never finished.

For the development of the hardware onboard the Insight quadrotor there has been a close
cooperation between the Insight project team and the Embedded System Lab (ESL) of the faculty
of Electrical Engineering, Mathematics and Computer Science (EEMCS) also at TU Delft. Under
supervision of Professor dr.ir. A.J.C. van Gemund, Marc de Hoop, a M.Sc. student, developed
the embedded systems capable of controlling both the Insight quadrotor and the quadrotor used
in the Embedded Real-Time Systems Course. This quadrotor is already capable of basic flight by
an experienced pilot.

The faculty of Aerospace Engineering and the MAVLab of the TU Delft have been suc-
cessfully working together in several projects with autonomous UAVs. The faculty provides the
theoretical background and the MAVLab provides the possibility of applying theory into practice
on real flying UAVs.
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This project combines the theory of state estimation and flight control in the design, im-
plementation and flight test of an indoor navigation and control system for a quadrotor UAV.

The chapter starts with the background of the project and explains the concept of a quadrotor
and autonomous flight. Then the problem is stated and the solutions that are found in literature
are discussed. From this the objectives of the project are set. Finally an overview of the chapters
in this report is given.

1-1 Quadrotor concept

From the first days in helicopter development, the quadrotor layout was seen as an alternative.
In a regular helicopter configuration the torque is counteracted by the tail rotor. When using
two rotors the torques of the rotors can compensated by each other. But two rotors create still
has challenges in control as the rotational and translational motions are still highly coupled.
With four rotors the control becomes easier and the rotational motions can be decoupled for the
gyroscopic effects. Translational motions are achieved by tilting the vehicle.

In the most common layout for quadrotor, the two pairs of rotors (1, 3) and (2, 4) turn
in opposite directions as shown in Figure 1-1. By varying the rotor speeds, one can change the lift
forces and create motion. Increasing or decreasing the four rotor speeds together generates vertical
motion. Changing the 2 and 4 propellers speed conversely produces roll rotation coupled with
lateral motion. Pitch rotation and the corresponding lateral motion result from 1 and 3 propellers
speed conversely modified. Yaw rotation results from the difference in the counter-torque between
the pairs of rotors.

Figure 1-1: Quadrotor motion, the arrow width is proportional to propeller rotational speed

1-1-1 Advantages and disadvantages

As only thrust control can be used to change position, blade-pitch control of the rotors is not
necessary and thus rotor mechanics are simplified, which make the quadrotor layout interesting
for smaller sized Vertical/Short Take Off and Landing (V/STOL) UAVs. Another advantage is
that with a quadrotor the thrust is solely used to compensate for the weight and not to counteract
the torque, because the four rotors eliminate the gyroscopic effect, so thrust is completely used
to carry the payload.
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1-2 Autonomous flight 5

For micro UAVs, four rotors results in a very small rotor diameter, which penalises effi-
ciency and increases energy consumption to get similar lift. Also the size and weight of a
quadrotor with similar payload is higher than a normal helicopter. The simplifications in building
and control which is offered by the concept, makes it still a very favourable design for UAVs.

1-2 Autonomous flight

Depending on the controlled variable the perception of the control of a quadrotor by a pilot is
perceived differently, see figure 1-2. Autonomous control is the most easiest for the pilot, where
the only variables to be set by the human controller are the desired positions (xd, yd, zd) of the
quadrotor, the rest of the control will be done automatically.

Moments
Mx,My,Mz

Impossible

Angular rates
p, q, r

Difficult

Angles
φ, θ, ψ

Possible

Velocities
u, v, w
Easy

Position
x, y, z

Very easy

Figure 1-2: Steps in control of a quadrotor and the perception of the control task by a human

On step further is complete autonomous flight, where the pilot can set desired begin and endpoint,
and the quadrotor will automatically move from begin to end, finding the best way around
obstacles.

1-3 Problem statement

Most quadrotor systems are equipped with 3-axis gyroscopes to measure the rotational rates p,
q, r and with 2 or 3-axis accelerometers to get a estimate of the angles φ and θ. Some quadrotor
system are equipped with 2 or 3-axis magnetometer to measure the heading ψ. This combination
of sensors in an Inertial Measurement Unit (IMU) allow the quadrotor to be stabilised in attitude,
but imperfections in the blades and motors, differing air flows over certain components on the
craft and outside forces such as wind can cause the craft to move without any noticeable change
in pitch or roll. These motions cannot be detected by the IMU and so it cannot correct for this
gentle drift [Roberts et al., 2007, Fowers et al., 2007]. Various errors in sensors, such as sensor
misalignment and sensor biases, can cause slight a difference between measured state and true
state, which also result in a drift.

In order to do autonomous flight an accurate estimation of the current position of the
quadrotor is required to close the position feedback loop. Double integration of the accelerometers
measurements of the IMU is not possible because not only the body acceleration is measured, but
also the gravitational vector, the accelerations due to rotation and an bias.
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In outdoor situations a Global Positioning System (GPS) can be used to measure velocity and
position with respect to the earth. However the use of GPS is not possible in indoor environments.
Therefore an alternative measurement of position is required indoor.

1-4 Literature overview

Additionally to the IMU sensors to estimate attitude, in literature several methods can be found
that are used for estimation of the position of a quadrotor.

1-4-1 Vision

In [Tournier et al., 2006] the six Degrees Of Freedom (DoF) state estimation of a quadrotor
vehicle based on moire patterns is demonstrated. From a single camera a moire pattern is
observed and the x,y,z and ψ information is extracted and combining this information with
the attitude information from the IMU allowed a quadrotor to fly an autonomous hover for an
limited time span. The controlled movement is only possible within a space given the target
remains in view. Further studies are necessary to test usability in larger spaces or for landing pads.

Camera’s are also used in [Altuǧ et al., 2002, Altuǧ, 2003] and a successive paper
[Altuǧ et al., 2005]. Two six DoF state estimation methods are proposed: initially a single
camera was used on the ground to estimate the state of the quadrotor using detection of blobs.
However this did not allow full autonomous flight. Therefore next a combination of two cameras
is used, one on-board the quadrotor and an other on the ground. This helped to decrease the
errors in estimating the tilt angles. Initial experiments on a tethered system have shown that the
vision-based control is effective in controlling the helicopter.

At the University of Cambridge one successful quadrotor project using a single camera for
state estimation is elaborated [Kemp, 2006]. In this thesis, a multiple hypothesis filter which
employs a dynamic programming algorithm is used. This filter is responsive enough, while
yielding stable and accurate determines the position x, y and z and attitude φ θ ψ. Onboard
sensors measure the angular rates p, q, r. The attitude estimates and onboard sensors are used
in simple controller to reliably control the orientation of the helicopter. This controller is in turn
nested inside a controller which chooses the orientation required to reach or hold at a desired
position. This combined controller is able to reliably fly the helicopter and results from a variety
of test flights are presented.

In the OS4 project at Ecole Polytechnique Fèdèrale de Lausanne (EPFL) a CCD camera is used to
determine horizontal positions x, y and the yaw angle ψ [Bouabdallah, 2007, Epiney et al., 2006].
Pattern recognition with a Canny edge detector and the Douglas-Peucker algorithms are imple-
mented. A red A4 paper can be robustly detected, and horizontal position and yaw angle can be
determined.

At Aalborg University [Petersen et al., 2008] a Vicon Motion Tracking System is used as
sensors to close the control loops of an Draganfly quadrotor. Tracking of the attitude and position
of the quadrotor is possible but autonomous control still lacks performance and is not yet possible.

In the STARMAC II project of Stanford University [Waslander et al., 2005] for indoor flights, an
overhead USB camera is used, with blob tracking software, to provide position sensing in place of
GPS. The camera system gives 1-2 cm accuracy at a rate of 10 Hz.
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1-4-2 Vertical position sensors

In several quadrotors, such as the Microdrones MD4-200 and in the Mikrokopter project a
pressure sensor is built in. Pressure sensors can be used to estimate the height, but are not
preferable for indoor environments because their measurement can be disturbed by airflows such
as the rotor flow or air condition systems. Furthermore their accuracy is not very high (in the
order of 10 cm).

Most quadrotor systems, such as the OS4 [Bouabdallah, 2007] and the STARMAC
[Hoffmann et al., 2007] use ultrasonic range finders for direct height measurement. Ultra-
sonic sensors have a wide measurement range (0.17 - 5.0 m) and a 20 Hz update rate. Test at
the MAVLab and in [Hoffmann et al., 2007] show that these sensors can interfere with the rotor
subsystem of a quadrotor. In indoor environments the sound of the rotor subsystem is reflected
by the walls and cause an incorrect measurement. Another problem with ultrasonic range finders
is that they have a wide beam angle so the do not measure the exact distance to a wall. Infrared
sensors have a small beam width, and give an accurate measurement of the distances also when
measuring under an angle. In the OS4 project [Bouabdallah, 2007] IR-sensors were tried for
height control, but not used because they inhibit a nonlinearity in the measurement, however
with correct calibration this problem can be solved.

1-4-3 Horizontal position sensors

At the EPFL another experiment is done using four infrared sensors, two in x and two in y direc-
tion. This allows autonomous hover of the quadrotor [Roberts et al., 2007], but the performance
of this set up is not optimal as the velocity of the quadrotor is derived by differentiating the noisy
signal from the infrared sensors and the onboard sensors are not integrated.

1-4-4 Optic flow sensors

Recently at Brigham University [Brigham Young University, 2008] optic flow sensors are imple-
mented onboard a quadrotor UAV. Integration of the velocity measurements of the optic flow
sensors give a position and allow the quadrotor to hover but give no information with respect to
the walls in the indoor environment.

1-5 Objective

In order to perform indoor navigation and control of a quadrotor UAV it is proposed to integrate
the measurements of the three gyroscopes, three accelerometers and three magnetometers of an
IMU with the distance measurements of infrared sensors. This tightly coupled sensor integration
allows estimation of all the states of the system and the biases of both the gyroscopes and ac-
celerometers. This indoor navigation and control should be tested on a real quadrotor UAV.
To reach this objective:

1. First the dynamical model of the quadrotor is required to test the sensor integration in
simulation.

2. As the dynamic model of the quadrotor is open loop unstable, a controller design is required
to do flight test in simulation

3. Next step is the development of the the state estimation algorithm to be able to do indoor
navigation with the selected sensors and test this with the simulation.
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4. A quadrotor UAV needs to be built with the selected sensors, able to perform flight tests
and send the measurements to a desktop computer for processing. This measurements can
then be used to test the state estimation algorithm.

5. An extra challenge is to use as much inexpensive parts as possible.

1-6 Outline of the report

In this chapter an introduction is given to this project and the quadrotor platform. Chapter 2
contains a overview of other main quadrotor platforms.

In the next part the dynamic model of the quadrotor is described, which is used to test
the indoor navigation and control in simulation. Because the quadrotor is open-loop unstable sys-
tem, a controller is required to do flight tests in simulation. This controller is designed in chapter 4.

In part III first the selected sensors that are used in the sensor integration are modelled.
Chapter 6 explains the state estimation method used to integrate the sensors of the IMU and the
IR sensors and discusses the results of this state estimation in simulation.

To perform flight tests with actual sensors, a quadrotor platform is designed. Part IV
starts with the development of this platform in chapter 7. Because without any control feedback
the quadrotor cannot fly, onboard filtering and control is required, which is described in chapter
8. Next in chapter 9 the real data from the quadrotor UAV is used to test the state estimation
method developed.

Finally, a conclusions and discussion of the work and recommendations for future work are
given.
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Chapter 2

Overview of quadrotor platforms

The quadrotor layout is a popular design for UAVs and a number of research projects already
tackled the design, navigation and control of this platform, for indoor and outdoor use. This
proves that this layout is a successful one and it is important to learn from these previous projects,
therefore this chapter will discuss previous research in the design of quadrotors.
This chapter starts with the early history of manned quadrotors and its modern day successors.
Next the main unmanned quadrotor platforms developed at universities are evaluated. Finally the
commercially available quadrotors and the open-source projects will be summarised. From this
also a conclusion for research at the TU Delft will be drawn.

2-1 Early history

In 1907 the Breguet Brothers built the first helicopter, which was a quadrotor. Their Gyroplane
No. 1 consisted of four long girders arranged in the form of a horizontal cross. The flights of
the Gyroplane No. 1 are considered to be the first manned flight of a helicopter, but not a free
or untethered flight. The machine never flew completely freely because it lacked stability and
proper means of control.

Later, in 1922, Georges de Bothezat built one of the largest helicopters of the time also a
quadrotor. His Flying Octopus flew successfully many times, at low altitudes and slow forward
speeds. However, because of insufficient performance, high financial costs, and the increasing
military interest in autogiros at the time, the project was cancelled.

In the same year Etienne Oemichen built his quadrotor, the Oemichen No.2. It was equipped with
four 2-blade paddle-shaped rotors of which the angles could be varied by warping. Additional
rotors where necessary for stabilisation and lateral movement, due to this the Oemichen No.2
exhibited, for its time, a considerable degree of stability and controllability, and in all made more
than a thousand test flights during the middle 1920s.
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10 Overview of quadrotor platforms

(a) Gyroplane No. 1 (b) Flying Octopus (c) Oemichen No. 2

Figure 2-1: Early quadrotors

2-2 Modern successors

After these first attempts, designers focused more on the single rotor helicopter layout, because
of the stability problems with the quadrotor layout. Interest in the quadrotor layout for manned
flight returned when knowledge on control strategies increased. Also the quadrotor layout with
tiltable rotors became an option to provide more flexibility and faster forward flight.

Convertawings Model A revived the concept tried out in 1922 by Oemichen and de Both-
ezat. A first prototype flew in 1956. Despite successful testing and development, military support
for the quadrotor ceased after cutbacks in defence spending. However, the design, particularly
its control system, was a precursor of current experimental vertical-rising aircraft designs that
incorporate tandem wings or a square configuration of four fans, ducts, or jets.

In order to develop a passenger aircraft using four tilting propellers, the Curtiss X-19 was
designed. The first hover flight was in November 1963, but the aircraft never completed transition
from hover to flight because poor mechanical control system characteristics severely penalised
low-speed operation. Lack of stability augmentation systems and upsets due to random flow In
Ground Effect (IGE) further increased pilot workload in hover.

From the start, in the Bell X-22A variable stability and control features were incorporated
for flight research on V/STOL handling qualities. Hover operation Out of Ground Effect (OGE)
in no wind was rated excellent but wind effects were quite noticeable, because of the large side
forces generated by the ducts. High-speed performance was limited by relatively high drag
associated with the four large ducts. The second prototype has generated significant V/STOL
handling qualities and is currently on flight status.

In 24 September 2005 the team of Bell Helicopter and Boeing signed a contract by the U.S. Army
to perform conceptual design and analysis of the Quad Tilt Rotor (QTR) aircraft, to provide for
the critical need for long range, high speed, heavy lift without access to runways. Bell Boeing’s
QTR is an evolutionary application of its tiltrotor technology utilised in the V-22 Osprey. The
QTR is a tandem-wing, four-proprotor aircraft with a large cargo fuselage and a rear-loading ramp.

The Moller company has been developing several flying vehicles with the final goal of de-
signing a aircraft to replace the car as the common way of transport which not able to to land
and hover in a small areas and to use the sky and fly over the crowded highways. Their last
design is the M400 Skycar with four ducted rotors. This V/STOL aircraft with a capacity of four
passengers, a cruise speed of 275 mph and its maximum range of 750 miles it has the features to
be able to reach their goal. However, currently they have still some problems with validation, but
these are expected to be solved next year.
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(a) Convertawings Model A (b) Curtiss X-19 (c) Bell X-22A

(d) Bell Boeing QTR (e) Moller M400 Skycar

Figure 2-2: Modern manned quadrotors

2-3 Main research projects

In time the knowledge of control theory improved together with the introduction of better com-
puting technology and sensors, which allowed the development of unmanned quadrotors. Several
research laboratories and universities started projects with quadrotors, but the development of
full autonomous flight in all environments is still a challenge.

Next subsections describe the main three research projects, done at Stanford University,
EPFL and Australia National University (ANU). Those three have developed a complete testbed
for quadrotor research. At other research laboratories and universities also studies are done with
the quadrotor design, but these are build from commercial off-the-shelf quadrotors or not as far
developed as these projects. Some of the other platforms are mentioned in the following chapters
if they are interesting objects to study for state estimation and control, because it is vital to learn
from others and build on already available knowledge.

2-3-1 Stanford University

At Stanford University in 1999 the Mesicopter project started [Kroo and Prinz, 2001a,
Kroo and Prinz, 2001b] and ended in 2001. It studied the feasibility of a centimetre scaled
quadrotor to use in huge numbers to investigate large areas or even planets. For this project an
extensive study was done into the aerodynamics effects of a quadrotor. Finally a prototype was
built of which the rotors could turn, but no lift off was achieved.

Next the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC) was
set up. This is a multi vehicle test bed used to demonstrate new concepts in multi agent control
on a real-world platform [Hoffmann et al., 2004, Hoffmann et al., 2007]. STARMAC consists of
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up to eight quadrotor vehicles that autonomously track a given waypoint trajectory.

The project is divided in three phases. In the first phase the initial vehicle and testbed
design for proof-of-concept flights is done. This phase was completed in the fall of 2004 with the
development of STARMAC I. In phase two the complete vehicle and testbed is redesigned to
create a full functioning testbed, this phase is now nearing completion with the STARMAC II. In
the final phase the multi agent control will be demonstrated.

(a) Mesicopter (b) STARMAC I (c) STARMAC II

Figure 2-3: Stanford University quadrotor projects

STARMAC I

The base vehicle for STARMAC I was originally an off-the-shelf DraganFlyer III, which has a
total of 1 kg of thrust and can sustain hover for about ten minutes at full throttle. The onboard
electronics were replaced with own printed circuit board so as to have complete control over
motor commands, power supply and sensor measurements.

An upgrade to lithium-polymer batteries has increased both payload and flight duration
and has greatly enhanced the abilities of the system. For attitude measurement the Microstrain
3DM-G motion sensor was used, with 3-axis gyro, accelerometer and magnetometer information.
For position and velocity measurement, a Trimble Lassen Low Power GPS receiver was used. To
improve altitude information the downward-pointing SOnic Detection And Ranging (SODAR)
the Devantech SRFO8 was used, especially for critical tasks such as take off and landing.All of the
onboard sensing is coordinated through two Microchip 40 MHz microcontrollers programmed in C.

Position estimation uses both GPS position and velocity measurements, as well as attitude
information in a Extended Kalman Filter (EKF) to update the position and velocity estimates
at 10 Hz. The GPS data is used to correct for integration bias of the small angle approximated
accelerations derived from the attitude information.

Attitude stabilisation is performed on board at 50 Hz and relayed to a central base sta-
tion on the ground, communicating via a Bluetooth Class II device with a range of over 150 ft.
Designed as a serial cable replacement and therefore operates at a maximum bandwidth of 115.2
kbps. This bandwidth of 115.2 kbps is divided among all (of four) flyers. The base station on the
ground performs Differential GPS (DGPS) and waypoint tracking tasks for all four flyers, and
sends commanded attitude values to the flyers for position control. Manual flight and waypoint
control is performed via the ground station laptop using Labview.

For control of the altitude a sliding mode control is applied and the attitude loop was de-
signed using Linear-Quadratic Regulator (LQR) techniques. Angular deviations were penalised
more than rate deviations. Also, the pitch and roll loops were penalised identically, with a reduced
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penalty on the yaw deviations. On the STARMAC I platform also more advanced controller types
are tested, such as integral sliding mode and reinforcement learning [Waslander et al., 2005].

STARMAC II

The STARMAC II testbed is a improvement of the first version at several points:

1. Thrust capabilities: Brushless motors and more rigid plastic propellers were combined to
double the efficiency and increase the total available thrust up to a total of 4 kg of thrust.

2. On-board computation resources: With the added lift capabilities, it was possible to signif-
icantly increase onboard computing power. Computation and control are managed at two
separate levels. The low level control, which performs real-time control loop execution and
outputs PWM motor commands, occurs on a microcontroller board based on the Atmega
128 processor. The high level planning, estimation and control occurs on a lightweight Cross-
bow Stargate 1.0 single board computer (SBC) running embedded Linux. Alternatively an
Advanced Digital Logic ADL855 PC104 running Kubuntu Linux can also be implemented,
providing more computational power, at the cost of additional weight and hence shortened
flight times.

3. Communication reliability and bandwidth: The testbed communication channel was changed
from Bluetooth to a WiFi network, enabling much greater bandwidth and improved commu-
nication channel management through a wireless router at the basestation. This has shown
significant improvements in communication robustness between base station and vehicle as
compared with the Bluetooth capabilities of STARMAC I.

4. Position measurement accuracy : Three-dimensional position and velocity measurements are
now done using a carrier phase differential Novatel Superstar II GPS unit with an resulting
position accuracy is 1-2cm. For indoor flights, an overhead USB camera is used, with blob
tracking software, to provide position sensing in place of GPS. The camera system gives 1-2
cm accuracy at a rate of 10 Hz, and provides a drop-in replacement for GPS input to the
EKF.

Instead of the LQR used in the STARMAC I in the STARMAC II Proportional-Integral-
Derivative (PID) control was implemented for attitude, altitude and position control.

Not only the hardware was improved but also the mathematical model of the quadrotor.
Three extra effects where quantified that relate to motion of the vehicle relative to the free
stream.

2-3-2 Ecole Polytechnique Fèdèrale de Lausanne (EPFL)

At the EPFL also an extensive quadrotor project is set up by Samir Bouabdallah. His PhD.
project focused on simultaneous consideration of the design and control problems of a quadrotor
UAV [Bouabdallah, 2007, Bouabdallah et al., 2005]

Two platforms were developed during this project. The first one is a quadrotorlike test-
bench with off-board data processing and power supply. It was used to safely and easily
test control strategies. The second one, the Omnidirectional Stationary Flying OUtstretched
Robot (OS4), is a highly integrated quadrotor with on-board data processing and power supply.
It has all the necessary sensors for autonomous operation.
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Figure 2-4: The EPFL OS4 quadrotor

The hardware of the OS4 consists of a self designed frame with the brushless sensorless outrunner
DC motors. Onboard is a miniature computer module, based on Geode 1200 processor running
at 266MHz with 128M of RAM and flash memory was developed. The controller includes a
microcontroller for interfacing Bluetooth with the computer module. The same chip is used
to decode the Pulse Position Modulation (PPM) signal picked up from a 5 channels Remote
Control (RC) receiver. For attitude sensing the Microstrain 3DM-GX IMU is used. Also five
range sensors, Devantech SRF10, are used. One for altitude and four for obstacle avoidance.
Additionally the position is determined using an on-board down-looking CCD camera and a
simple pattern on the ground. The camera provides a motion-blur free image of 320x240 at up to
25 fps. The algorithm detects the pattern, estimates the pose and provides the camera position
(x,y) and yaw angle (ψ), also described in [Roberts et al., 2007].

Several control theories were tested, the first one, based on Lyapunov theory, was applied
for attitude control [Bouabdallah et al., 2004a]. The second and the third controllers are based
on PID and LQR techniques [Bouabdallah et al., 2004b, Bouabdallah and Siegwart, 2006]. These
were compared for attitude control. The fourth and the fifth approaches use backstepping and
sliding-mode concepts [Bouabdallah and Siegwart, 2005]. They are applied to control attitude.
Finally, backstepping is augmented with integral action and proposed as a single tool to design
attitude, altitude and position controllers. This approach is validated through various flight
experiments conducted on the OS4.

A dynamic model to simulate the quadrotor evolved from a simple set of equations, valid
only for hovering, to a complex mathematical model with more realistic aerodynamic coefficients
and sensor and actuator models.

2-3-3 Australia National University (ANU)

The Australia National University developed in 2002 the MARK I prototype which is a quadrotor
with an innovative design using inverted teetering rotors [Pounds et al., 2002]. The two key
challenges facing the development of the Australian National Universitys X-4 Flyer were thrust gen-
eration and dynamic stability. The successor MARK II X4 Flyer has weight of 2 kg with a length
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of 70 cm an 11 inch diameter rotors [Ng et al., 2004, Pounds et al., 2006, Pounds et al., 2004].
The electronics are substantially the same as the Mark I, although a lighter sensor unit has
replaced the original Crossbow IMU. The craft is stabilised by an onboard embedded HC12
controller. The controller reads attitude from a CSIRO Eimu IMU that provides angular rate and
acceleration measurements and angular position estimates at 50 Hz. The Eimu is a full six-axis
IMU with magnetometer.

The rotors are designed to lift the flyer with an additional 30% control margin and were
designed and fabricated at the ANU. The geometry is designed so that the rotor tips flex to the
optimal operating angle under load. The ANUX2 airfoil used is a custom section made specially
for the rotors. The rotors are driven by Jeti Phasor 30-3 three-phase brushless motors. They
offer high torque performance that allows for direct drive of the rotors, eliminating the need for
gearing. Custom motor control boards commutate the motors. These were developed by the
CSIRO Queensland Centre for Advanced Technology ICT group. The boards are based around
the Freescale HC12D60A microprocessor and Toshiba TB9060 brushless motor speed control
chip.

Power is provided by 24 Li-Poly 2000 mAh high discharge cells with a nominal voltage of
3.7 V, ranging from 4.2 V fully charged and dropping to 3 V at depletion. Each cell can deliver
up to 20 A. The batteries are connected to a power bus of six parallel sets of four cells in series
combining the batteries to 14.8 V nominal voltage and 120 A of current draw per motor. This
gives the flyer an expected flight time of 11 minutes at hover speed.

Communication is done using a long-range Bluetooth serial module connected to a laptop
base station running Linux, with a range of up to 100 m. Telemetry from the flyer is logged by
the base station and displayed on-screen. The user can issue commands via the laptop using the
keyboard and a JR-X3810 radio handset. The radio handset can also trigger a safety kill switch
on the X-4, independently of the Bluetooth communications channel, using an onboard radio
receiver. In an emergency the kill switch can stop the rotors instantly by disabling the motor
control boards, even if data communications is lost.

Unlike the MARK I, the MARK II incorporates simple onboard proportional-integral-derivative
control. The previous iteration used a slow, off-board control system connected to the flyer by
a tether. It is anticipated that the convenient aerodynamics of the X-4 had made sophisticated
control unnecessary. In conjunction with onboard power, this allowed the flyer to be entirely
self-contained.

Figure 2-5: The ANU MARK II X4 Flyer
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2-4 Commercially available

Microdrones MD4-200

http://www.microdrones.com/md4-200.html
The Microdrones MD4-200 is the most advanced quadrotor available on the customer market.
Interesting fact is that the Dutch police is also owner of one of those quadrotors for future use
in crowd control. It uses accelerometers, gyroscopes, magnetometer, airpressure, humidity and
temperature sensors, combined in a Attitude and Heading Reference System (AAHRS). The
optional GPS provides position hold and autonomous waypoint navigation. It has an onboard
flight recorder (microSD card) and a downlink decoder to provide all important data at the base
station (battery state, altitude, attitude, position, flighttime). Security features prevent it from
crashing, featuring autonomous landing on low battery or missing radio signal. Depending on
payload, temperature and wind the vehicle achieves up to 20 minutes of flight time.

Draganfly

http://www.rctoys.com/
The Draganfly quadrotor has been developed in succesive steps into is current version V Ti. This
version has a self leveling system with 4 infrared sensors and a three axis gyroscopes. It can be
equipped with a wireless video camera system, to use it as a stable aerial video system.

Silverlit X-UFO

http://www.silverlit-flyingclub.com/xufo-body.htm
This winner of the Toy Innovation award is the cheapest quadrotor platform available, and there-
fore has only limited performance using mechanical gyroscopes and a flighttime of only 5 minutes.
The frame is from carbon fiber and has an foam protection ring. The frame and engines of this
quadrotor are used as a basis for this project.

(a) Microdrones MD4-200 (b) Draganflyer V Ti (c) Silverlit X-UFO

Figure 2-6: Some commercially available quadrotors

X-UFO Brushless

http://www.xufo-shop.de
The X-UFO Brushless is a further development of the Silverlit X-UFO using brushless motors. It
is smaller and quieter than the open source project Mikrokopter. It can be bought in parts, and
the framework can designed separately. The X-UFO contains no expansion options, such as GPS
module or digital cameras.
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Quattrokopter

http://www.lcc-shop.de
The Quattrokopter is based on the open source project Mikrokopter. Either a complete Quat-
trokopter can be boughed or only the seperate X-frame. The flight is controlled with three gyro-
scopes, one accelerometer, a barometer height sensor.

BigQuadro

http://www.tt-tronix.de
The BigQuadro is a project using a special control board, the QuadroControl II, with onboard
control 3 gyroscopic sensors for the stabilization of the flight. There are two different versions,
one with brushed motors and one with brushless motors for increased payload. It is not possible
to buy a complete quadrotor, but the manual gives clear instructions how to construct your own
quadrotor.

2-5 Open source projects

Mikrokopter

http://www.mikrokopter.de
This is the most developed open source project for a quadrotor, where the electronics have been
completely designed, including software, and all knowledge is freely available. It uses a combination
of a 3-axis gyroscope and accelerometers for control.
It is possible to equip the quadrotor with brushless motors, for which a special controller Printed
Circuit Board (PCB) is developed. The Mikrokopter is optional expandable with barometer
(MPX4115) for a height control / limitation, an electronic compass, a GPS module (uBlox), a
digital camera and wireless radio transmission.

UAVP

http://www.uavp.ch
The UAVP (Universal Aerial Video Platform) is a remotely controlled, and also optional au-
tonomous flying quadrotor. If not controlled by the pilot, it retains height and direction, and
using GPS even position. This allows this platform to be used for video flights. It uses brushless
electric engines, has a variable diameter of 360 to 1000mm and a weight of less than 1,000 grams.
It can be expanded with magnetic sensors, an acceleration sensor for drop, a camera and a GPS
module.
The new UAVP Next Generation (http://uavp.ch/moin) is a full reimplementation of the UAVP
using a newer processor with more computing power and more memory capacity. This project is
still in development phase.

2-6 Conclusions

This chapter gives a good overview of the various manned and unmanned quadrotor platforms
developed. It is clear that the quadrotor platform is a multi purpose platform which requires
integrated development in electronics, informatics, aerodynamics, state estimation and control.
Already quite some knowledges is available, but still some great challenges are there to be found,
such as complete autonomous indoor flight. Therefore it is an ideal platform for research combining
knowledge on the various faculties at TU Delft.
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Chapter 3

Quadrotor modelling

In order to test the indoor navigation and control in simulation a dynamical model of the
quadrotor is required. The model of dynamic equations describing the attitude and position of
the quadrotor are basically those of a rotating rigid body with six degrees of freedom and four
inputs.

The dynamic model of the quadrotor system has already thoroughly been investigated by
[Fay, 2001, Hoffmann et al., 2007, Pounds et al., 2006, McKerrow, 2004] and others. The model
described in [Bouabdallah, 2007] is very complete and validated with real in flight data. There-
fore it is reliable enough to be used as basis for the simulation model. However it does not
include some additional effects that are investigated in other studies. In this chapter all those
aspects will be combined. Recently in [Martinez, 2007] the Draganfly quadrotor is modeled
in more detail including test in wind-tunnels, this model is not yet validated with real inflight data.

In this chapter first the reference frames and the kinematic relations between the reference
frames are defined. After stating the assumptions used in this model, the forces and moments
acting on the rotors are modelled. All forces and moments are then combined in the full dynamic
equations of motion. In the final section the implementation in the Matlab/Simulink model will
be elaborated and a conclusion given.

3-1 Reference frames

Modelling starts with defining the reference frames, these are according to [Mulder, 2006] and
depicted in figure 3-1:

• The earth-fixed inertial reference frame (0eXeYeZe) is a right-handed orthogonal axis-system
with the origin at the quadrotor’s centre of gravity at the beginning of the considered motion.
This reference frame is fixed to the earth and is considered as the inertial frame of reference
under simplifying conditions.

• The body-fixed reference frame (0bXbYbZb) is a right-handed orthogonal axis-system with
the origin at the quadrotor’s centre of gravity. The reference frame remains fixed to the
quadrotor even in perturbed motion.
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Figure 3-1: Earth fixed reference frame and body fixed reference frame

The absolute position of the quadrotor is described by the three coordinates (x,y,z) of the centre
of mass with respect to the earth reference frame.

Its absolute attitude is described by the three Euler’s angles (ψ,θ,φ). These three angles
are respectively called yaw angle (−π ≤ ψ < π), pitch angle (−π

2
< θ < π

2
) and roll angle

(−π
2
< φ < π

2
). Because for now the quadrotor will not perform aerobatics, it is possible to use

the Euler angles in the boundaries given.

3-2 Kinematic relations

The kinematic relations relate the movements and rotations in the earth-fixed inertial reference
to the body-fixed reference frame.

The derivatives with respect to time of the angles (ψ,θ,φ) can be expressed in the form:

[ψ̇ θ̇ φ̇]T = N(ψ, θ, φ)ω (3-1)

in which ω = [p q r]T are the angular velocities with respect to the body reference frame and
N(ψ, θ, φ) is the 3x3 matrix given by:

N(ψ, θ, φ) =





0 sinφ sec θ cosφ sec θ
0 cosφ − sinφ
1 sinφ tan θ cosφ tan θ



 (3-2)

This matrix depends only on (ψ,θ,φ) and is invertible if the boundaries on (ψ,θ,φ) for non-
singularity hold.

Similarly, the derivative with respect to time of the position (x,y,z) is given by

[ẋ ẏ ż]T = V0 (3-3)
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where V0 = [u0 v0 w0]
T is the absolute velocity of the quadrotor with respect to an earth-fixed

inertial reference frame. Let V = [u v w]T be the absolute velocity of the quadrotor expressed
in a body-fixed reference frame. V and V0 are related by

V0 = R(ψ, θ, φ)V (3-4)

where R(ψ, θ, φ) is the rotation matrix given by:

R(ψ, θ, φ) =





cos θ cosψ (sinφ sin θ cosψ − cosφ sinψ) (cosφ sin θ cosψ + sinφ sinψ)
cos θ sinψ (sinφ sin θ sinψ + cosφ cosψ) (cosφ sin θ sinψ − sinφ cosψ)
− sin θ sinφ cos θ cosφ cos θ





(3-5)

3-3 Assumptions

It is not possible to create a model that is completely conform reality, some assumptions need to
be made. In this model the following is assumed:

• The quadrotor structure is rigid

• The quadrotor structure is symmetrical

• The propellers are rigid

• The cross products of the inertia matrix can be neglected

• The ground effect is neglected

3-4 Aerodynamic forces and moment of a rotor

Using the blade element theory [Fay, 2001, Prouty, 2002] it is possible to calculate the forces
acting parallel and perpendicular to the rotor shaft as well as the moments acting about the rotor
shaft and hub. Assuming the rotors are rigid, the force parallel to the rotor shaft is defined as the
thrust T of the rotor and the forces perpendicular to the rotor shaft are defined as the hub forces
H. Also two moments work on the rotor; the drag moment MQ and the rolling moment MR.
It can be assumed that the lift acting on the blade is about an order of magnitude higher than
the drag. In the following subsections, the thrust, hub forces, and rotor moments will be defined
for each rotor. In figure 3-2 these forces and moments are clearly visible.

The explanation of the various symbols used in the equations below can be found in the
list of symbols.

Figure 3-2: Forces and moments acting on a rotor
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Thrust force

The thrust force is the resultant of forces acting on all blade elements perpendicular to the rotor
shaft.

T = CT ρA (ΩR)
2

(3-6)

CT
σa

=

(

1

6
+
µ2

4

)

θ0 −
(

1 + µ2
) θtw

8
− λ

4
(3-7)

Hub force

The hub force is the resultant of forces acting on all blade elements in the horizontal plane. Notice
that the hub force is zero if the velocity is zero.

H = CHρA (ΩR)
2

(3-8)

CH
σa

=
µC̄d
4a

+
1

4
λµ

(

θ0 −
1

2
θtw

)

(3-9)

Drag moment

The drag moment is the resultant moment of all horizontal forces acting about the centre of the
rotor. This torque determines the power required for the motor to keep the rotor spinning, and
thus providing a drag moment.

MQ = CMQ
ρA (ΩR)

2
R (3-10)

CMQ

σa
=

1

8a

(

1 + µ2
)

C̄d + λ

(

θ0
6

− θtw
8

− λ

4

)

(3-11)

Rolling moment

Because the blades move horizontally through the air, the advancing blade will produce more lift
than the retracting blade, resulting in an overall rolling moment being produced on the rotor.

MR = CMR
ρA (ΩR)

2
R (3-12)

CMR

σa
= µ

(

θ0
6

− θtw
8

− λ

8

)

(3-13)

Note that in [Fay, 2001] this equation is negative, because an other reference system is used.

3-5 Dynamic equations

It is assumed that the cross products of the inertia matrix J can be neglected, due to the layout
of the quadrotor.

J =





Ixx 0 0
0 Iyy 0
0 0 Izz



 (3-14)
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Using the general equations of motions, found in [Mulder, 2006]:

Fx = −W sin θ +X = m(u̇+ qw − rv)
Fy = W cos θ cosψ + Y = m(v̇ + ru− pw)
Fz = W cos θ cosψ + Z = m(ẇ + pv − qu)

Mx = L = Ixxṗ+ (Izz − Iyy)qr
My = M = Iyy q̇ + (Ixx − Izz)rp
Mz = N = Izz ṙ + (Iyy − Ixx)pq

(3-15)

Where Fx, Fy, Fz are the external forces in the body-fixed frame, and Mx, My, Mz are the e
external moments in the body fixed frame.
In the next subsections the external forces and torques are summarised. Note that the quadrotor
rotor plane is above the centre of gravity so the hub forces will also create a moment.

3-5-1 External forces in body fixed frame

Forces along u axis

Hub forces −
4
∑

i=1

Hui

Friction − 1
2
CuAuρu|u|

Forces along v axis

Hub forces −
4
∑

i=1

Hvi

Friction − 1
2
CvAvρv|v|

Forces along w axis

Thrust −
4
∑

i=1

Ti

Friction − 1
2
CwAwρw|w|

3-5-2 External torques in body fixed frame

Roll moments

Propeller gyro effect JrqΩr
Pitch actuators action l(−T2 + T4)

Hub force due to sidewards flight −h(
4
∑

i=1

)Hvi

Rolling moment due to forward flight (−1)i
4
∑

i=1

MRui

Pitch moments

Propeller gyro effect −JrpΩr
Pitch actuators action l(T1 − T3)

Hub force due to forward flight h(
4
∑

i=1

)Hui

Pitch moment due to sidewards flight (−1)i
4
∑

i=1

MRvi
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Yaw moments

Inertial counter-torque Jr∆Ω̇r

Counter-torque unbalance (−1)i
4
∑

i=1

MQi

Hub force unbalance in forward flight l(Hu2
−Hu4

)
Hub force unbalance in sidewards flight l(−Hv1 +Hv3)

The explanation of the symbols can be found in the nomenclature in the front of this
report.

3-5-3 Complete dynamic equations of the quadrotor

Combining the above the complete dynamic equations of the quadrotor are obtained:

mu̇ = −m(g sin θ − qw + rv) −
4

∑

i=1

Hui
− 1

2
CuAuρu|u| (3-16)

mv̇ = m(g cos θ sinφ− ru+ pw) −
4

∑

i=1

Hvi
− 1

2
CvAvρv|v| (3-17)

mẇ = m(g cos θ cosφ− pw + qu) −
4

∑

i=1

Ti −
1

2
CwAwρw|w| (3-18)

Ixxṗ = (Iyy − Izz)qr + JrqΩr + l(−T2 + T4) − h(

4
∑

i=1

)Hvi
+ (−1)i

4
∑

i=1

MRui
(3-19)

Iyy q̇ = (Izz − Ixx)rp− JrpΩr + l(T1 − T3) + h(
4

∑

i=1

)Hui
+ (−1)i

4
∑

i=1

Mrvi
(3-20)

Izz ṙ = (Ixx − Iyy)pq + JrΩ̇r + (−1)i
4

∑

i=1

MQi
+ l(Hu2

−Hu4
) + l(−Hv1 +Hv3) (3-21)

3-6 Additional effects

The dynamic equations of section 3-5-3 give the complete model of the quadrotor under the
assumptions given in 3-3. However for completeness some additional effects are studied. These
effects are less straightforward to model but could be implemented in the model after further
experiments.

3-6-1 Ground effect

If an rotor of the quadrotor approaches the ground the thrust increases due to better rotor
efficiency, this is called the ground effect [Prouty, 2002]. The airflow from the rotor is impacting
with the ground and causing a small build up of air pressure in the region below the rotor
disk. The rotor is then ”floating” on a cushion of air. This means that less power is required
with respect to the Out of Ground Effect (OGE). In Ground Effect(IGE) conditions are usually
found within heights about 0.5 to 1.0 times the diameter of the main rotor. The height will
vary depending on the type of rotor, the slope and nature of the ground, and any prevailing winds.

In [Bouabdallah, 2007] a basic model of Cheeseman [Cheeseman and Bennett, 1957] is used
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to calculate the thrust coefficient IGE CIGET . Cheeseman stated that at constant power the
following relationship can be used:

TOGEviOGE
= TIGEviIGE

(3-22)

where TOGE and TIGE is the thrust IGE and OGE, and viOGE
and viIGE

the induced velocity in
IGE and OGE.

Then with the variation of the induced velocity:

δvi =
Avi

16πz2
=

vi
(4z/Rrad)2

(3-23)

a relation between the thrust IGE and OGE can be derived, assuming vi and δvi are constant over
the disk which allows viIGE

= vi − δvi:

TIGE
TOGE

=
1

1 − R2
rad

16z2

(3-24)

Consider the inflow ratio in the ground effect as:

λIGE =
(viOGE

− δvi − ż)

ΩRrad
(3-25)

then the thrust coefficient OGE in equation 3-7 can be rewritten for the IGE:

TIGE = CIGET ρA (ΩRrad)
2

(3-26)

CIGET

σa
=
COGET

σa
+

δvi
4ΩRrad

(3-27)

Note that as in movements the attitude angles change, so the thrust IGE are not similar for all
four rotors at the same time. In [Bouabdallah, 2007] a simple test is performed for one rotor
near ground, where for the above formulas an indication of validity is given. As the ground effect
is influenced by several parameters, mentioned above, extensive testing should be performed to
properly validate this relationship for the quadrotor platform. For now only the flight regime OGE
is modelled.

3-6-2 Blade flapping

When the rotors translate horizontally there is a difference in lift between the advancing and
retreating blades, which caused the rolling moment as described in 3-4, but in practice it also
induces another effect; blade flapping. When using non-rigid unhinged stiff blades, blade flapping
causes the rotor tip path plane to tilt. The dynamics of rotor flapping are very fast, occurring
within one revolution of the rotor, compared to the rigid body dynamics of the quadrotor.
Consequently, the blade flapping equations can be written as instantaneous functions of the
quadrotor horizontal velocity.

In [Pounds et al., 2006] the theory of blade flapping as used in the model for the X4 quadrotor
is described. This X4 is equipped with hinged blades, so this model cannot be fully used for
our situation with unhinged stiff blades as it over-predicts the blade flapping effect. In the
STARMAC II project [Hoffmann et al., 2007] this model is expanded for use in these situations.
The flapping properties of a stiff, fixed-pitch rotor blade can be analysed by modelling the blade
as being hinged at an effective offset ef from the centre of rotation (expressed as a percentage
of the rotor radius) and a torsional spring with stiffness kβ Nm/rad at the hinge as is shown in 3-3.
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Figure 3-3: Change of the direction of the forces on the rotors is caused due to the longitudinal
deflection, a1s . The flapping properties of a stiff, fixed-pitch rotor blade can be analysed by modelling
the blade as being hinged at an effective offset ef from the centre of rotation (expressed as a
percentage of the rotor radius) and a torsional spring with stiffness kβ Nm/rad at the hinge.

Coning is the upward flexure of the rotor blades from the lift force on each blade. For stiff two
bladed rotors, the moments due to the coning angles are symmetric about the rotor hub and cancel.

The flap angle β of a rotor blade is in literature typically defined as the total deflection of
a rotor blade away from the horizontal in body coordinates at any point in the rotation:

β = a0s
− a1s

cosΨ + b1s
sinΨ (3-28)

where a0s
is the blade deflection due to coning and a1s

and b1s
are the longitudinal and lateral

blade deflection amplitudes due to flapping. Ψ is the azimuth angle of the blade, and is defined
as zero at the rear opposite to the velocity of the rotor V , see figure 3-4.

Figure 3-4: Blade flapping angles.

Since the effect of coning is cancelled by using stiff two bladed rotors and the effect of the lateral
deflection cancels out for quadrotors, the change of direction of the forces on the rotor are entirely
due to the longitudinal deflection a1s

.

From experiments in [Hoffmann et al., 2007] it shown that the model with stiff blades cor-
responds reasonably with the measured values. In our model however for now we assume that
the rotor blades are rigid. The non-rigid effect of the rotor blades will effect flight only in
higher velocity flights, and our initial research will not touch that flight regime. It is shown
by [Bouabdallah, 2007] that the rigid-rotor model is sufficient for lower velocity flight regimes.
Implementing the blade flapping also requires extensive experiments as is shown in the STARMAC
II project.
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3-7 Simplified model for control & filter design

For control and filter design purposes it is a simplified model can be usefull, as this enables easier
design of the state estimation filter and control laws. Neglecting all forces and moments except
for the actuator forces and moments and weight, the model is simplified as follows:

mu̇ = −m(g sin θ − qw + rv) (3-29)

mv̇ = m(g cos θ sinφ− ru+ pw) (3-30)

mẇ = m(g cos θ cosφ− pv + qu) − U1 (3-31)

Ixxṗ = (Iyy − Izz)qr + lU2 (3-32)

Iyy q̇ = (Izz − Ixx)rp+ lU3 (3-33)

Izz ṙ = (Ixx − Iyy)pq + U4 (3-34)

Where U1, U2, U3 and U4 are the inputs, described in equation 3-44.

In hover the thrust Ti for each rotor can be estimated as:

Ti ≈ bΩ2
i (3-35)

where b is the thrust factor in hover.

For the torque MQi
a similar relation holds:

MQi
≈ dΩ2

i (3-36)

where d is the drag factor in hover.

Then the inputs can be rewritten as:

U1 =
4
∑

i=1

Ti = b
(

Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4

)

U2 = (−T2 + T4) = b
(

−Ω2
2 − Ω2

4

)

U3 = (T1 − T3) = b
(

Ω2
1 − Ω2

3

)

U4 = (−1)i
4
∑

i=1

MQi
= d

(

−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4

)

(3-37)

Simplification of the model of course induces an error. In appendix E a comparison is shown
between the the simplified and complete model, where can be noticed that the complex model is
more damped.

3-8 Motor dynamics

The Direct Current (DC) motors can be modelled using the known equations
[Franklin and Emami-Naeini, 2006]:

Ω̇m = −1

τ
Ωm − d

ηr3Jt
Ω2
m +

1

kmτ
u (3-38)

1

τ
=

k2
m

RmJt
(3-39)

where d is the drag factor in hover, τ the motor-time constant, km the torque constant, Rm the
motor internal resistance, η motor efficiency and u the motor voltage input. Linearizing the rotor
speeds around an operating point Ω0, the motor rotational speed in hover, gives:

Ω̇m = 0 = −
(

1

τ
+

2dΩ0

ηr3Jt

)

Ωm +

(

1

kmτ

)

u+
dΩ2

0

ηr3Jt
(3-40)
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With this the relationship between the required angular speed and motor voltage can be written:

u = kmτ

((

1

τ
+

2dΩ0

ηr3Jt

)

Ωm − dΩ2
0

ηr3Jt

)

(3-41)

Using equation 3-35 and 3-36 and simplifying gives:

uthrust = αthrust
√
T + β (3-42)

utorque = αtorque
√

MQ + β (3-43)

Experiments can be used to determine this relation to calculate the voltage setting from the
required thrust and torque.

By inverting the equations 3-37 and combining it with equation 3-41, an formula is derived to
calculate the motor voltages from the inputs:

u =









umotor1
umotor2
umotor3
umotor4









= kmτ











(

1

τ
+

2dΩ0

ηr3Jt

)

√

√

√

√

√

√

√









1
4b

0 1
2b

− 1
4b

1
4b

− 1
2b

0 1
4b

1
4b

0 − 1
2b

− 1
4b

1
4b

1
2b

0 1
4b

















U1

U2

U3

U4









− dΩ2
0

ηr3Jt











(3-44)
This relationship is implemented in the motor inversion block in Simulink.

3-9 Matlab-Simulink model

The dynamical model derived in this chapter is used to simulate the quadrotor in a Simulink model.
This model is a modified version of the model as developed the OS4 project [Bouabdallah, 2007],
where the dynamic equations are corrected for the North East Down reference frame. The
parameters from the OS4 project are used as these are already validated and give the most
realistic quadrotor simulation (listed in appendix A-1). The simulations are split in separate
blocks, allowing easy adjustments of the various parts and can be used for various quadrotor
platforms by adjusting the parameters. An overview of the simulation set up can be found in
appendix B.

With this model it is possible to simulate the measurements of the onboard sensors. Ad-
ditional modules showing the 3D view of the quadrotor and connecting a joystick for input are
also designed.

3-10 Conclusions and recommendations

This chapter describes the dynamical model of the quadrotor system that is valid for low speed
flights, starting with the aerodynamic forces and moments of the rotors and combining these
moments together with other external forces and moments into a dynamical equations using
Newton’s laws. The dynamical model is implemented in Simulink and this creates an ideal tool
for evaluating various state estimation and control techniques before implementing them on the
real quadrotor.

In future research this model can be expanded to implement additional effects such as
bladding flapping and the ground effect. An other effect that is not modelled are the lags in the
motor system, to implement this motor identification is required.
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Chapter 4

Control design

A quadrotor has the four actuators, and in free flight six degrees of freedom so it is an under-
actuated and dynamically unstable system, therefore the controller design is a challenging task.
The open loop response of the quadrotor is unstable and therefore control feedback is necessary
to be able to fly the quadrotor in simulation and in reality.

This chapter starts with analysing the control strategies already applied to the quadrotor
layout in previous experiments and simulations. For control of the quadrotor, classical control is
selected as the preferred method. Following up, the theory of classical control will be explained
with respect to its application to the quadrotor system. Next the results in simulation will be
discussed.

4-1 Selection of the control method

It is wise to have a look at the various control methods already applied on the quadrotor layout
so it is possible to learn by the experiments already done and use this knowledge to select the
controller that will be used in this project or even in future projects. Each controller type will be
explained briefly together with the projects involved.

4-1-1 Literature overview

Classical control

In classical control the controller consist of the three components: the Proportional, Integral and
Derivative part (P-I-D). The Proportional part is provides the basic feedback, the Integral part
removes the steady state and the Derivative part adds damping to the controller.

In the OS4 project at the EPFL [Bouabdallah, 2007, Bouabdallah et al., 2004b,
Bouabdallah and Siegwart, 2006] PID control was applied successfully on a quadrotor on a
ball-joint. Simulations and the experiments have shown that their OS4 quadrotor can be
controlled efficiently in hover using a classical approach. This controller will not be able to
stabilize the quadrotor in presence of strong perturbation. The results with the classical approach
were better than with a Linear-Quadratic Regulator. An integrator was added to remove the
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steady state error.

Flight tests indoors in the STARMAC project [Hoffmann et al., 2007] show that good tracking
was obtained with classical control even without an integrator for pitch and roll giving tracking
errors on the order of 2 - 3 degrees.
At low velocities and with small aerodynamic disturbances (for example in indoor flight), PID
control is fully sufficient for good tracking of commanded attitude since the vehicle approximates a
double-integrator with a first-order lag from the motor dynamics. In higher velocity translational
flight, the pitch and roll dynamics of a quadrotor are very sensitive to additional effects, and thus
other control strategies should be used.

At Lakehead University [Tayebi and McGilvray, 2006] an alternative to the standard classi-
cal controller is implemented. The proposed controller is based upon the use of a PD2 feedback
structure, where the proportional action is in terms of the vector quaternion and the two
derivative actions are in terms of the airframe angular velocity and the vector quaternion velocity.
Also is shown that the model-independent Proportional-Derivative (PD) controller, where the
proportional action is in terms of the vector-quaternion and the derivative action is in terms
of the airframe angular velocity, without compensation of the Coriolis and gyroscopic torques,
provides asymptotic stability. The proposed controller as well as some other controllers have been
tested experimentally on a small-scale quadrotor aircraft.

In the project at at the University of Cambridge using a single camera for state estima-
tion also a nested PID controller is used [Kemp, 2006]. An Proportional-Integral (PI) controller
is nested inside a controller which chooses the orientation required to reach or hold at a desired
position. This combined controller is able to reliably fly the quadrotor and results from a variety
of test flights are presented.

Linear-Quadratic Regulator

The LQR is an optimal control solution that minimises a certain cost function. In discrete time
the algebraic Riccati equation is used. At Heudiasyc [Castillo et al., 2005] test are done applying
a LQR on a quadrotor platform. The roll and pitch angle of the quadrotor oscillates considerably,
so that the helicopter could not hover. After numerous trials this oscillations were reduced,
nevertheless, the obtained performance is not adequate to perform autonomous hovering.

Nested Saturations

As performance of the LQR was not adequate, Heudiasyc [Castillo et al., 2004,
Castillo et al., 2005, Escareno et al., 2006, Salazar-Cruz et al., 2005] focused on the use of
the nested saturations technique for quadrotor control. The nested saturation technique de-
veloped can exponentially stabilize a chain of integrators with bounded input. In successive
papers the control strategy was developed and implemented on a microcontroller on-board a
quadrotor. The experimental results showed that the low-cost embedded control system performs
satisfactorily.

Backstepping

In backstepping the control law is designed using the Lyapunov stability criterium. Using a
virtual control law the idea is to step back through the system to find a control law. Back-
stepping controllers are especially useful when some states are controlled through other states
[Altuǧ et al., 2002], as it is the case with the quadrotor dynamics.
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After the unsatisfying results applying LQR on the quadrotor platform the application of
pure backstepping on the quadrotor is tested at the EPFL [Bouabdallah and Siegwart, 2005,
Bouabdallah, 2007]. The controller is able to stabilize the orientation angles even for relatively
critical initial conditions. Next integral backstepping was applied [Bouabdallah, 2007], which
combines integral action of PID with pure backstepping. Robustness against disturbances offered
by backstepping and robustness against model uncertainties offered by the integral action. This
integral backstepping controller was chosen as the final control method as it had the optimum
performance.

At the Commissariat l’Énergie Atomique (CEA) pure backstepping is applied to control
the translational velocities of the vehicle as well as the yaw angle [Guenard et al., 2005]. The
simplicity of the proposed control law and the use of quaternions have allowed us to implement
the proposed controller in an embedded microcontroller for which the computing power is limited.
Flight experimentations show good performance of the proposed controller for the flight stability.

The Robotics Laboratory of Versailles also investigates a full state backstepping controller
[Madani and Benallegue, 2006b, Madani and Benallegue, 2006a]. The system is divided into an
under-actuated subsystem, fully-actuated subsystem and a propeller subsystem. Simulation and
experimentation results show the adequate performance of the proposed controller.

In an interesting paper of the GRASP Laboratory at the University of Pennsylvania back-
stepping is compared against a mode based feedback linearisation controller in simulation
[Altuǧ et al., 2002]. From this simulation the backstepping controller is selected as the favourable
option. This selected controller is then successfully applied in a quadrotor set-up on a stand.

Sliding mode

In control theory, Sliding Mode Control (SMC) is a type of variable structure control where the
dynamics of a nonlinear system is altered via application of a high-frequency switching control.
This is a state feedback control scheme where the feedback is not a continuous function of time.

After testing the pure backstepping control law at the EPFL this controller is altered to use a
sliding mode design with a signum function [Bouabdallah, 2007, Bouabdallah and Siegwart, 2005].
As it can be seen from the experiments the sliding-mode approach provides average results,
because it induces a chattering effect. This is partly due to switching nature of the controller
which introduces high frequency, low amplitude vibrations causing the sensor to drift.

At Ohio State University [Xu and Özgüner, 2006] the control problem is divided into a
fully-actuated subsystem (z and ψ and an under-actuated subsystem (x, y, θ φ) in simulation.
The results show that their proposed approach with a sliding mode controller is able to robustly
stabilize the quadrotor helicopter and move it to any position with any yaw angle. The chattering
effect of the sliding mode control, as also was found by the EPFL, is avoided in the control input
by using the continuous approximation of the sign function. This makes this approach applicable
in real applications.

To provide robust control throughout the flight envelop and overcome the chattering effect
of the SMC the Integral Sliding Mode (ISM) technique is applied in the STARMAC project
[Waslander et al., 2005]. An ISM altitude control with integral LQR position control technology
was implemented real-time on the platform. Compared to linear control design techniques
the ISM control proves a significant enhancement. By explicitly incorporating bounds on the
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unknown disturbance forces in the derivation of the control law, it is possible to maintain stable
altitude on a system that has evaded standard approaches.

Feedback Linearisation

In FeedBack Linearisation (FBL) control the known non-linear system is transformed into an
equivalent linear system, through a change of variables and a suitable control input. A specific
case of FBL is known as Non-linear Dynamic Inversion (NDI), where the non-linear model is
linearised and inverted. This linearised system is placed as the inner loop and an outer loop is
added to control this inner loop.

At the Robotics Laboratory of Versailles [Mokhtari and Benallegue, 2004, Mokhtari et al., 2005,
Mokhtari et al., 2006, Benallegue et al., 2006, Benallegue et al., 2007] a feedback linearisation
controller for the quadrotor model is designed in several successive design steps. To avoid
singularity in the Lie transformation matrices when using exact linearisation, one of the control
variables is delayed by a double integrator. The outer loop is designed with a classical polynomial
control law. Additionally an higher-order sliding mode observer is designed to find the additional
states from the position (x,y,z) and the yaw angle ψ. Simulations show that this combination
of controller and observer performs satisfactory also when aerodynamic disturbances applied. In
[Bouadi et al., 2007] the inner loop feedback linearisation is combined with an outer loop GH∞
controller. The results show that the overall system becomes robust when weighting functions
are chosen judiciously.

Neural-Network

Using purely Neural Network (NN), trained offline, the Royal Military College of Canada
[Dunfied et al., 2004] tried to create a NN based control system that could reside in an on-board
lightweight microcontroller system. Success was achieved for the control of the roll and pitch, us-
ing tilt sensor inputs only and tilt sensor and gyro inputs. When the yaw axis was added, control
of all three axes was achieved but some work remains to be done to integrate more smoothly the
drift of the gyro data.

Reinforcement Learning

On the STARMAC platform next to the ISM an Reinforcement Learning (RL) controller was tested
for altitude control [Waslander et al., 2005]. For this work, a nonlinear, nonparametric model of
the system is first constructed using flight data, approximating the system as a stochastic Markov
process. Then a model-based reinforcement learning algorithm uses the model in policy-iteration
to search for an optimal control policy that can be implemented on the embedded microprocessors.
The RL law is susceptible to system disturbances for which it is not trained. In particular, varying
battery levels and blade degradation may cause a reduction in stability or steady state offset.
Comparison of the step response for ISM and RL control reveals both stable performance and
similar response times, although the transient dynamics of the ISM control are more pronounced.

4-1-2 Conclusion

In the previous sections the applied control strategies on the quadrotor design are discussed.
Clearly not all control strategies give similar results. Classical PID control is the most simple
control type for the quadrotor that performs very good as well, therefore it is decided to start
with this type of control. In later phases it is possible to use more advanced controllers.
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4-2 Classical control

Classical PID control is selected as the preferred control method, this section the basic theory is
given of this controller type.

4-2-1 Theory

The classical control method or PID control structure in its complete form consists of three com-
ponents: the Proportional, Integral and Derivative part. In this section the separate parts are
described with their respective characters. The response of a system can best be described by
looking at the response of a unit step input on a system, shown in figure 4-1.

Figure 4-1: Example of a typical response to a unit step input of a system. Mp is the maximum
overshoot, tr the rise time and ess is the steady state error.

Proportional control

The proportional control reduces the rise time of the system. With pure proportional control, it
is typical that steady state errors occur in response to a step input.

Proportional-Integral control

If an integral action is added, then the steady state error will be reduced. Note that integral
action, while removing the offset or steady-state error, may lead to oscillatory response of slowly
decreasing amplitude or even increasing amplitude, both of which are usually undesirable. Note
that when control saturation occurs integrator windup can happen, this should be avoided as
creates instability of the controller.

Proportional-Derivative control

Derivative control when added to the proportional control, provides a means of obtaining a con-
troller with high sensitivity, or in other words it improves the transient response. For a step
input this means that the overshoot is reduced. An advantage if using derivative control is that
it responses to the rate of change of the actuating error and can produce a significant correction
before the magnitude of the actuating error becomes to large. Derivative control thus increases the
stability of the system. Although derivative control does not affect the steady-state error directly,
it adds damping to the system and thus permits the use of a larger value of the proportional gain,
which will result in an improvement in the steady-state accuracy.
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Proportional-Integral-Derivative control

Combining the Proportional, Integral and Derivative control results in a PID controller, which
can be applied to reduce rise time, reduce maximum overshoot and remove the steady steaty error
for many systems. In aerospace engineering mainly the parallel PID controller structure is used,
depicted in figure 4-2. The control law is described with the transfer function:

K(s) = KP +
KI

s
+KDs (4-1)

where KP is the proportional gain, KI the integral gain and KD the derivative gain.

Figure 4-2: Parallel PID control structure

4-2-2 Controller tuning

For tuning of the PID controller, several tuning algorithms are developed, such as Ziegler-Nichols
and Lambda tuning. From the Insight project [Thus et al., 2007] it is known best results for the
quadrotor are obtained by iterative tuning.

When iterative tuning is used, the following algorithm can be used to get the desired
overall response:

1. Investigate step response

2. Add gain KP to reduce the rise time tr if necessary

3. Add gain KD to improve the maximum overshoot Mp if necessary

4. Add gain KI to eliminate steady state error ess if necessary

5. Adjust gains till desired overall response is obtained

4-3 Quadrotor controller structure

The proposed controller structure is a PID controller for each of the states, with a special nested
PID controller for position control [Buskey et al., 2003].

Additionally a motor inversion block is added, which is the calculation of equation 3-44,
to translate the control command to a motor voltage.
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4-3-1 Yaw control

The yaw is the least critical of the controls since it has no direct effect on the quadrotor’s motion.
It can be independently tuned and tested, while having manual control in the remaining channels.

It is important to note that disturbances have a relatively small effect on yaw, so no large
gains are required to control the yaw direction and only low bandwidth yaw control is required.

The PID control law for yaw is described by the following equation:

U4 = −KψP
(ψ − ψd) −KψI

∫

(ψ − ψd)δt−KψD
(ψ̇ − ψ̇d) (4-2)

And also shown schematically in figure 4-3

Figure 4-3: Yaw ψ control loop

4-3-2 Roll and pitch controller

Because the quadrotor’s layout is symmetrical the roll and pitch control can be assumed
independent for small attitude angles. Relative to the yaw control a higher bandwidth is required,
since it value has also a direct relationship to the lateral acceleration in x and y direction.

For roll the following control law is used, also shown schematically in figure 4-4

U2 = −KφP
(φ− φd) −KφI

∫

(φ− φd)δt−KφD
(φ̇− φ̇d) (4-3)

Figure 4-4: Roll φ controller

Similar for the pitch control:

U3 = −KθP
(θ − θd) −KθI

∫

(θ − θd)δt−KθD
(θ̇ − θ̇d) (4-4)

4-3-3 Horizontal position nested controller

The horizontal position (x, y) of the quadrotor is controlled by adjusting the roll and pitch. The
total thrust produces a lift acceleration approximately equal to the gravity g in a direction normal
to the plane of the rotors. A small angle of roll φ results therefore in a lateral acceleration ÿ ≈ φg.
Note that the commanded roll should be in the plane of rotors, otherwise incorrect commands
are given when the yaw does not equal zero.
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A nested controller is used to correct the position of the vehicle, as shown in figure 4-5.
The commands in x and y direction:

Ux = −KxP
(x− xd) −KxI

∫

(x− xd)δt−KxD
(ẋ− ẋd) (4-5)

Uy = −KyP
(y − yd) −KyI

∫

(y − yd)δt−KyD
(ẏ − ẏd) (4-6)

Corrected for the yaw angle they give the commands for the desired roll and pitch angle:

φd = − sin(ψ)Ux + cos(ψ)Uy (4-7)

θd = cos(ψ)Ux + sin(ψ)Uy (4-8)

The schematics of the y position controller is shown in figure 4-5.

Figure 4-5: Horizontal position y nested controller. For simplification it is assumed that ψ ≈ 0.

4-3-4 Vertical position z controller

When operating above the ground effect, the control output U1 is approximately proportional
to the vertical acceleration in the body reference frame. To remain at constant height, a large
value of U1 is required to counteract gravity, additionally a PID controller is added to stabilise
the motion in z direction. The control law can be described as:

r1 = −KzP
(z − zd) −KzI

∫

(z − zd)δt−KzD
(ż − żd) (4-9)

U1 =
r1 +mg

cosφ cos θ
(4-10)

And its schematics are shown in figure 4-6

Figure 4-6: Vertical position z controller

4-3-5 Waypoint following

Waypoints are coordinates that identify a point in physical space where the quadrotor should fly
to (so xd, yd and zd). In order to hover only a single waypoint is necessary, in order to fly a certain
track waypoints with an timestamp td need to be generated, this timestamp gives the moment
the command of xd, yd and zd is set. It is possible to either use discrete waypoints, or generate
waypoints by interpolation. The latter is preferred as this bounds the error that is fed into the
controller significantly and thus results in a much smoother response. Using discrete waypoints
with to large step size can result in instability.
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4-4 Results

Using the Simulink model developed in chapter 3, we test the proposed controller before imple-
menting it into the quadrotor. Using the gains from table 4-1, this results in a stable hover of the
quadrotor model. The results of the simulation is shown in figure 4-7.
Figures 4-8 and 4-9 show the result of flying the quadrotor using interpolated waypoints. This
flight plan will be used to test the indoor navigation.

movement P I D
roll 0.9 0.3 0.2

pitch 0.9 0.3 0.2
yaw 0.06 0.01 0.02
x -0.09 0 -0.1
y 0.09 0 0.1
z 8 0.5 10

Table 4-1: PID gains in simulation
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Figure 4-7: Controller stability in hover. Initial states: 10 degrees pitch, roll,
yaw and 0.5 meters in x, y, z position.
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Figure 4-8: Simulation of a flight tracking waypoints generated by interpola-
tion.
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Figure 4-9: Simulation of a flight tracking waypoints generated by interpolation.

4-5 Conclusions and recommendations

The selected controller structure, a PID controller for each of the states, with a special nested
PID controller for position control is able to successfully stabilises the quadrotor and is also able
to fly a track in space with selected waypoints.

At the TU Delft in the department of Dynamics and Control of Aerospace Vehicles (DCAV)
extensive research is done in the field of using NDI in flight control. To the knowledge of the
author, this has only be tested in simulation for the quadrotor layout, therefore it would be
interesting to apply NDI in practice on the quadrotor developed. However due to time limitations
this is not possible within this thesis project.
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Indoor navigation using state
estimation

M.Sc. thesis Menno Wierema B.Sc.





Chapter 5

Sensor modelling

In chapter 1 the sensors that are used in the proposed sensor integration are introduced: three
gyroscopes, three accelerometers, three magnetometers and IR sensors. This chapter describes the
models used to simulate and estimate these measurement of these sensors. This modelling cannot
be done without knowledge of the technologies behind the sensors, therefore a explanation is given
of the technology of each of the sensors and their error characteristics.

5-1 3-Axis gyroscope

The gyroscopes used onboard the quadrotor are Micro-machined ElectroMechanical
Systems (MEMS) sensors, which have compared to mechanical and optical gyroscopes a
low part count (as few as three parts) and are relatively cheap to manufacturer. At present
MEMS sensors cannot match the accuracy of optical devices, however they are expected to do so
in the future. Some advantages of MEMS sensors are: small size, low weight rugged construction
and low power consumption.

MEMS gyroscopes make use of the Coriolis effect, which describes the effect that in a
frame of reference rotating at an angular velocity ω, a mass m moving with velocity v experiences
a force:

Fc = −2m(ω × v) (5-1)

In a MEMS gyroscope the Coriolis effect is measured using vibrating elements [Woodman, 2007].
Many vibrating element geometries exist, but the simplest geometry consist of a single mass
which is driven to vibrate along a drive axis, as shown in image 5-1(a). When the gyroscope is
rotated a secondary vibration is induced along the perpendicular sense axis due to the Coriolis
force. The angle velocity can be calculated by measuring the secondary rotation. In image 5-1(b)
the detailed layout of the Y sensor in the IDG-300 is shown.
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(a) Schematics (b) Details of Y-sensor [James, 2008]

Figure 5-1: IDG-300 MEMS Sensor

5-1-1 MEMS error characteristics

As mentioned MEMS gyroscopes are far less accurate than optical gyroscopes. To model them
correctly it is necessary to first describe the errors that arise in them. The ability to compensate
for these inaccuracies is an important factor determining the quality of the device.

• Constant bias
The bias of a rate gyro is the average output from the gyroscope when it is not undergoing
any rotation (i.e: the offset of the output from the true value). A constant bias error of ε,
when integrated, causes an angular error which grows linearly with time θ(t) = ε · t. The
constant bias error of a rate gyro can be estimated by taking a long term average of the
gyro’s output whilst it is not undergoing any rotation. Once the bias is known it is trivial
to compensate for it by simply subtracting the bias from the output.

• Thermo-Mechanical White Noise / Angular Random Walk
The output of a MEMS gyro will be perturbed by some thermo-mechanical noise which
fluctuates at a rate much greater than the sampling rate of the sensor. As a result the
samples obtained from the sensor are perturbed by a white noise sequence, which is simply
a sequence of zero-mean uncorrelated random variables [Woodman, 2007]. Each random
variable is identically distributed and has a finite variance σ2. This effect of the noise on
the integrated signal is that the noise introduces a zero-mean random walk error into the
integrated signal, whose standard deviation σθ(t) = σ ·

√
δt · t grows proportionally to the

square root of time. Here a random walk is defined as a process consisting of a series of
steps, in which the direction and size of each step is randomly determined.

• Flicker noise / Bias drift
The bias of a MEMS gyroscope wanders over time due to flicker noise in the electronics and
in other components susceptible to random flickering. The effects of flicker noise are usually
observed at low frequencies in electronic components. At high frequencies flicker noise tends
to be overshadowed by white noise. Bias fluctuations which arise due to flicker noise are
usually modelled as a random walk.
In reality bias fluctuations do not really behave as a random walk. If they did then the
uncertainty in the bias of a device would grow without bound as the timespan increased.
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In practice the bias is constrained to be within some range, and therefore the random walk
model is only a good approximation to the true process for short periods of time.

• Temperature Effects
Temperature fluctuations due to changes in the environment and sensor self heating induce
movement in the bias. Note that such movements are not included in bias stability measure-
ments which are taken under fixed conditions.
Any residual bias introduced due to a change in temperature will cause an error in orienta-
tion which grows linearly with time. The relationship between bias and temperature is often
highly nonlinear for MEMs sensors.

• Calibration Errors
The term calibration errors refers collectively to errors in the scale factors, alignments,
and linearities of the gyros. Such errors tend to produce bias errors that are only observed
whilst the device is turning.
Such errors lead to the accumulation of additional drift in the integrated signal, the
magnitude of which is proportional to the rate and duration of the motions.

5-1-2 Assumptions

Assumptions for the gyroscope model:

• Noise with zero mean and variance σ2

• Bias with random walk model

5-1-3 Mathematical model

The measured angular rates are assumed to have a bias and white noise:





pm
qm
rm



 =





p+ λpm
+ wpm

q + λqm
+ wqm

r + λrm
+ wrm



 (5-2)

The derivatives of the gyroscope biases are modelled as white noise:





λ̇pm

λ̇qm

λ̇rm



 =







wλ̇pm

wλ̇qm

wλ̇rm






(5-3)

5-2 3-Axis accelerometer

The ADXL330 sensor is a monolithic, three-axis, force-balanced, capacitive accelerometer. The
proof mass, supported by the four springs, is movable along any axis (X-Y-Z) in response to an
inertial force. The proof mass is attached to the common electrode of sets of differential capacitors,
with the other electrodes of each differential capacitor pair being fixed. Each sense axis requires
a separate set of differential capacitors oriented to the appropriate direction. The differential
capacitance is measured by applying one of two complementary (180 out-of-phase) square-waves
to each of the fixed plates of the differential capacitors. [James, 2008]
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Figure 5-2: Optical and SEM images of ADXL330 MEMS structure

5-2-1 Specific Accelerometer Error characteristics

Additional to the errors mentioned for the MEMS gyroscopes, the accelerometer measurement is
influences by the position of the sensor with respect to the centre of gravity of the vehicle. Because
our sensor is placed close to the centre of gravity, this effect is ignored.

5-2-2 Assumptions

Assumptions for the accelerometer model:

• Noise with zero mean and variance σ2

• Bias with random walk model

• Placed in the centre of gravity of the vehicle

5-2-3 Mathematical model

For a perfect accelerometer the measurement can be calculated with:





Ax
Ay
Az



 =





u̇+ qw − rv + g sin θ
v̇ + ru− pw − g cos θ sinφ
ẇ + pv − qu − g cos θ cosφ



 (5-4)

However, in reality also a biases and noise are also measured:





Axm

Aym

Azm



 =





Ax + λAxm
+ wAxm

Ay + λAym
+ wAym

Az + λAzm
+ wAzm



 (5-5)

5-3 3-Axis magnetomer

The magnetometer measures the strength and direction of the local magnetic field, allowing the
north direction to be found. Magnetometers are not accurate enough to replace gyroscopes com-
pletely in a Inertial Navigation System (INS). The main advantage of the magnetometer is that
is does not rely on any external infrastructure.
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5-3-1 Error characteristics

Local disturbances in the earth’s magnetic field due to nearby magnetic objects have influence on
the measurement of the magnetometer. It was found that the magnetometer is very sensitive to
power cables and radiators. The motors also change the direction of the magnetic vector, which
should be adjusted for.

5-3-2 Assumptions

Assumptions for the magnetometer model:

• No bias on the measurement, only noise due to vibrations of the motors.

• The direction of the magnetic field vector M0 is not changing over time.

5-3-3 Mathematical model

For a perfect magnetometer the measurement can by calculated with:





Mx

My

Mz



 =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ









cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



×





cos(ψ + ψroom) sin(ψ + ψroom) 0
− sin(ψ + ψroom) cos(ψ + ψroom) 0

0 0 1









Mx0

My0

Mz0





(5-6)

In this formula the yaw angle of the room is implemented ψroom, see also figure 5-6, which is the
angle of the room with respect to the magnetic field. Mx0

, My0 , Mz0 are defined as:





Mx0

My0

Mz0



 =





− cos(i) cos(d)
− cos(i) sin(d)

sin(i)



 (5-7)

Where i is the inclination and d is the declination, see figure 5-3. The inclination can be calculated
using i = sin−1(Mz) when holding the magnetometer static and horizontal using the average over
a number of measurements. The declination d can be measured can be measured by aligning
the magnetometer exactly north and comparing the measured heading with the true heading.
However in practice this is hard to achieve without exact knowledge of the true heading. Literature
states (see figure 5-3) that zero is a good approximation for our location on the earth. The real
magnetometer measurement is assumed to be only disturbed by white noise:





Mxm

Mym

Mzm



 =





Mx + wMxm

My + wMym

Mz + wMzm



 (5-8)

Each timestep the measurements of the magnetometer are normalised, to overcome problems
with error spikes in the measurements.

Note that for determining Mxm
,Mym

and Mzm
the room parameters φroom should be known.
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Figure 5-3: Definition of the magnetic field parameters. The inclination of the magnetic field i
is the angle between the magnetic north and the vector of the magnetic field measurement Nm.
In the Netherlands the inclination is approximately 60o degrees downwards. The declination d is
the difference between the true geographic north and the magnetic north, in the Netherlands about
0o-2o degrees west [van der Merwe, 2004]. The deviation (not depicted) is the angle between the
geographic north and the measured geographic north, this is caused due to disturbances onboard the
vehicle.

5-4 Infrared sensors

The selected infrared rangers use triangulation and a small linear CCD array to compute the
distance and/or presence of objects in the field of view. The basic idea is that a pulse of IR light
is emitted by the emitter. This light travels out in the field of view and either hits an object or
just keeps on going. In the case of no object, the light is never reflected and the reading shows no
object. If the light reflects off an object, it returns to the detector and creates a triangle between
the point of reflection, the emitter, and the detector.

The angles in this triangle vary based on the distance to the object, see image 5-4. The
receiver portion of these detectors is a precision lens that transmits the reflected light onto various
portions of the enclosed linear CCD array based on the angle of the triangle described above.
The CCD array can then determine what angle the reflected light came back at and therefore, it
can calculate the distance to the object.

This method of ranging is reasonably immune to interference from ambient light and offers
indifference to the colour of object being detected. Detecting a black wall in full sunlight is
possible with this technique. The wavelength of the pulse is in the range of 850nm +/-70nm.
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Figure 5-4: Functioning of the IR sensor - measurement by triangulation

5-4-1 Infrared error characteristics

The infrared sensors have some specific errors that cause the measurement to be disrupted:

• Nonlinearity
Because of the measurement method, the output of these detectors is non-linear with respect
to the distance being measured, see 5-5. Secondly, within a close range inside of the stated
distance range (for the GP2Y0A02YK less than 20cm), the output drops rapidly and re-
sembles a longer range reading. By placing the sensors in such way that these measurement
are prevented (as in the x-y direction) or by combining sensors with different ranges, this
problem can be avoided.

• Reflectivity of surface
In figure 5-5 the difference is shown between the measurements on white paper and gray
paper, which differ slightly. It was found that the reflectivity of most surfaces is sufficient,
except for very dark carpet.

• Ambient light
As stated in the specifications, this method of ranging is almost immune to ambient light.
However initial test with the quadrotor show that some interference is measured with fluo-
rescent lamps which are quite common in office environments.

• Calibration Errors
The quadrotor is equipped with several infrared sensors. Test have shown that each sensor
has slightly different characteristics.

• Aligning Errors
Due to the incorrect placement of the sensors on the vehicle an other distance is measured
than expected.

• Measurement noise
Because of the non linear relationship of the measurements the noise increases with measured
distance.

• Interference with other IR sensors
The IR sensors also measure the reflection of the beams on opposite walls of the other IR
sensors onboard the quadrotor.
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• Not aligned with ADC update rate
The GP2Y0A02YK updates its measurement at about 26 Hz and the GP2Y0A0700 up-
dates its measurement at about 70 Hz, the ADC is read at about 380 Hz so effectively the
measurements can only be used at the original update rate of the sensor.

(a) Distance (b) Inverse of distance

Figure 5-5: GP2Y0A02YK - Example of output characteristics from the datasheet

5-4-2 Assumptions

Assumptions for the IR model:

• Constant noise, worst case scenario;

• No measurement outside minimum and maximum range;

• Room is not changing and room size is known;

• The position of the sensor with respect to the quadrotor’s centre of gravity is neglected;

• Each sensor same characteristics;

• The yaw angle of the quadrotor does not change more than 40 degrees.

5-4-3 Mathematical model

The infrared sensor measures the distance from the sensor to a fixed reflection point, for example
a wall.
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A room is defined as a box with four walls, a floor and a ceiling. The walls are perpen-
dicular to each other and a distance of xroom and yroom apart, the distance between the ceiling
and floor is zroom, see figure 5-6. Two walls are crossing the origin O. The distance from any
point P in the room to the wall it sees, when measuring with 6 infrared sensors from the origin
of the body reference frame along the axis of this frame without any rotations, equals:
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(5-9)

Notice the negative sign of the z, because the position is specified in the North-East-Down Earth
Fixed reference frame.
When the body reference frame rotates, see figure 5-6 and if point P is the position of the quadrotor,
the distance measurements of the infrared sensors using basic goniometry yield:
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(5-10)

Because the measurements are not perfect, also a noise is measured:
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(5-11)

Note that for determining IRx1m
,IRy1m

and IRz2m
the room parameters xroom,yroom and zroom

should be known.
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Figure 5-6: Derivation of the measurement equations of the infrared sensors

5-5 Conclusions and recommendations

In this chapter the models of the sensors are described. The models are simplified versions of the
actual measurements of the sensors, some effects such as changing noise parameters, placing of the
sensors with respect to the centre of gravity and calibration errors are neglected. In future work,
further testing of the sensors could be done to enhance these models.
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Chapter 6

Indoor navigation using state
estimation

The goal of this project is to combine gyroscopes, accelerometers and infrared sensors, to get a
state estimation in an indoor environment. The relationships between the measurements and
states are described by non-linear equations, and therefore the Extended Kalman Filter(EKF) is
used to perform state estimation.

This chapter starts with explaining the theory of the Extended Kalman Filter and dis-
cusses the results in simulation of a standard AHRS Kalman filter and a full Kalman filters that
combines all measurement. In the chapter 9 these filters are then tested on real sensor data.

6-1 Extended Kalman filter (EKF)

The standard Kalman filter can be used to estimate the state x ∈ Re
n of a discrete-time linear

process. For a non-linear process the Extended Kalman Filter(EKF) is used that linearises about
the current mean and covariance [Welch and Bishop, 2001].

6-1-1 Formulation

Assume the process has a state vector x ∈ Re
n described by the non-linear stochastic difference

equation:

xk ≈ f(xk−1,uk,wk−1) (6-1)

with a measurement z ∈ Re
m:

zk ≈ h(xk,vk) (6-2)

where wk and vk are the process and measurement noise respectively. There are assumed to be
independent of each other, white noise and with normal probability distributions:

p(w) ∼ N(0,Qk) (6-3)

p(v) ∼ N(0,Rk) (6-4)
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In practice the process noise covariance Qk and measurement noise covariance Rk might change
with each time step of measurement, but are assumed to be constant in this filter.

Because one does not know the values of this noise at each time step, it is possible to
approximate the state and measurement vector:

x̃k = f(x̂k−1,uk, 0) (6-5)

z̃k = f(x̃k, 0) (6-6)

where x̂k is an a posteriori estimate of the state (from previous time step).

Then equations 6-1 and 6-2 can be linearised using:

xk ≈ x̃k + A(xk−1 − x̂k−1) + Wwk−1 (6-7)

zk ≈ z̃k + H(xk − x̃k) + Vvk−1 (6-8)

where:

• xk and zk are the actual state and measurement vectors

• A is the Jacobian matrix of partial derivatives of f with respect to x :

Ak =
∂f

∂x

∣

∣

∣

∣

x̂k−1,uk,0

• W is the Jacobian matrix of partial derivatives of f with respect to w:

Wk =
∂f

∂w

∣

∣

∣

∣

x̂k−1,uk,0

• H is the Jacobian matrix of partial derivatives of h with respect to x:

Hk =
∂h

∂x

∣

∣

∣

∣

x̃k,0

• V is the Jacobian matrix of partial derivatives of h with respect to v:

Vk =
∂h

∂v

∣

∣

∣

∣

x̃k,0

Note that this Jacobian is often equal to the identity matrix.

The operation of the Kalman filter is divided into two steps: a prediction step and a correction
step. For each of the steps a number of equations need to be solved, see figure 6-1. For each time
step the Jacobians A, W, H and V need to be recomputed.

State prediction

In practice the state prediction from equation 6-1 is calculated using integration of the state
derivate function:

x̂−

k = f(x̂k−1,uk, 0) = xk−1 +

tk
∫

tk−1

g(x̂k−1,uk, 0)δt (6-9)

where g(x̂k−1 are the equations that describe the derivatives of the states. Note that in the actual
calculation simple Euler integration is used:

x̂−

k ≈ xk−1 + ẋk−1∆t (6-10)
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(1) Predict state ahead
x̂
−

k
= f(x̂k−1,uk, 0)

(2) Predict estimate covariance ahead
P−

k
= AkPk−1A

T

k
+ WkQk−1

WT

k

Time update (”Predict”) Measurement update (”Correct”)

k + 1

(1) Compute innovation covariance
Sk = HkP

−

k
HT

k
+ VkRkV

T

k

(2) Compute Kalman gain
Kk = P−

k
HT

k
S−1

k

(3) Compute innovation
ỹk = zk − h(x̂−

k
, 0)

(4) Update state estimate
x̂k = x̂

−

k
+ Kkỹk

(5) Update the error covariance
Pk = (I − KkHk)P−

k
(I − KkHk)T + KkRkK

T

k

Initial estimates for x̂k−1, Pk−1 and Qk−1

Line up

Figure 6-1: The operation of the Extended Kalman Filter

Covariance matrix of the state prediction error

The prediction of the covariance ahead is calculated with:

P−

k = AkPk−1A
T
k + WkQk−1W

T
k (6-11)

Because integration of the state variables is used, the equations of section 6-1-1 cannot be used,
and:

Ak = eFkδt (6-12)

Wk =

(∫

Akδt

)

Gk (6-13)

Where Fk is the Jacobian:

Fk =
∂g

∂x

∣

∣

∣

∣

x̂k−1,uk,0

(6-14)

And Gk is the noise Jacobian:

Gk =
∂g

∂w

∣

∣

∣

∣

x̂k−1,uk,0

(6-15)

The Jacobians Ak and Wk are the transform of the continuous functions Fk and Gk to discrete
time.

6-1-2 Critism on the Extended Kalman filter

Unlike its linear counterpart, the extended Kalman filter is not an optimal estimator. In addition,
if the initial estimate of the state is wrong, or if the process is modelled incorrectly, the filter
may quickly diverge, owing to its linearisation. Another problem with the extended Kalman filter
is that the estimated covariance matrix tends to underestimate the true covariance matrix and
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therefore risks becoming inconsistent in the statistical sense without the addition of stabilising
noise.

Several alternatives for this filter are possible:

• Iterated Extended Kalman filter [Chu, 2006, Section 2, page 58].

• Unscented Kalman Filter [Julier and Uhlmann, 1997],[Julier and Uhlmann, 2001, Chapter
13].

• Hybrid Kalman - Minimax filter [Simon, 2007].

In this project, in spite of the its limitations, the Extended Kalman Filter is used because it is
believed that the process can be modelled correctly and initial state can be estimated.

6-2 Validation of the Kalman Filter

To validate the performance of the Kalman filter, several tools are available. Most important is
the observability analysis, to analyse if the filter can diverge to a meaningful solution.

6-2-1 Observability

A linear system described by the matrices A,B,C,D in state space form:

x(n+ 1) Ax(n) +Bu(n) (6-16)

y(n) Cx(n) +Du(n) (6-17)

and is observable if a finite time t1 > 0 exists such that for each admissible input function u, it
follows from y(t, x0, u) = y(t, x1, u) for all t ∈ [0, t1], that x0 = x1.

The observability of A,B,C and D can be completely characterized by the matrices A and
C. A np× n matrix W can be defined, called the observability matrix as:

W =











C
CA
...

CAn−1











(6-18)

The following statements are equivalent:

1. The system (A,B,C,D) is observable.

2. W has rank n

Similarly for the Extended Kalman filter the observability is characterised with the observability
matrix, using H and F:

W =











H
HF

...
HFn−1











(6-19)

A Kalman filter built around a system with unobservable states will simply not work. By definition,
an unobservable state is one about which no information may be obtained through the observation
equations; in the absence of information, the filter estimate for that state will not converge on a
meaningful solution.
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6-2-2 Convergence of the covariances matrix of state estimation error

In order for the Kalman filter to be stable the covariances matrix of state estimation error should
stabilise, changes in this matrix are a sign that the observability changes. The values on diagonal
of the covariances matrix should converge to a number, divergence is a sign that the Kalman
filter is unstable. The square root of the covariance have the same units as the quantity being
estimated. For an perfect estimator the error of the estimation should be normally distributed
with the standard deviation calculated by the square root of the covariance and with a zero mean.

6-2-3 Mean squared error

The mean squared error (MSE) quantifies the amount by which an estimator differs from the true

value of the quantity being estimated. The MSE of an estimator θ̂ with respect to the estimated
parameter θ is defined as:

MSE(θ̂) = E((θ̂ − θ)2). (6-20)

The MSE can be written as the sum of the variance and the squared bias of the estimator

MSE(θ̂) = Var
(

θ̂
)

+
(

Bias(θ̂, θ)
)2

. (6-21)

For an unbiased estimator, the MSE is the variance. The MSE thus assesses the quality of an
estimator in terms of its variation and unbiasedness. The square root of MSE yields the root
mean squared error or RMSE, which has the same units as the quantity being estimated; for an
unbiased estimator, the RMSE is the square root of the variance.

6-2-4 Observability degree

If a system is observable the quality of the observability can be determined with the condition
number of the observability matrix. This number is calculated by first taking the singular values
from the diagonal matrix S of the Singular Value Decomposition (SVD). The singular value
decomposition of a matrix X produces a diagonal matrix S of the same dimension as the matrix
X, with nonnegative diagonal elements in decreasing order, and unitary matrices U and V so
that X = U ∗ S ∗ V ′.

By dividing the highest singular value by the lowest singular value a number is calculated
that gives an indication of the difference in observability of the various parameters and should be
a factor 1010 or lower. An lower number indicates that the observability of the various parameters
is more similar and thus the estimation will give better results.

6-3 Attitude and Heading Reference System (AHRS)

The standard Attitude and Heading Reference System (Attitude and Heading Reference System
(AHRS)) consists of a 3 axes angular rate gyroscope, a 3 axes accelerometer and a 3 axis
magnetometer. In literature this combination is also known as Magnetic, Angular Rate, and
Gravity (MARG)-sensor. In this section the measurements of these 9 sensors will be combined
using an EKF, which is depicted in figure 6-2.
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3-axis accelerometers

rate gyros 3-axis magnetometerpm, qm, rm 6 state EKF

φ, λ, ψ

λpm
,λqm

, λrm

Mxm
, Mym

, Mzm

Axm
, Aym

, Azm

Figure 6-2: AHRS Extended Kalman Filtering setup

In this thesis Euler angles are used to calculate the translations between the reference frames. This
is because the movements of the quadrotor in this project stay within the singularity boundaries
and the use of Euler angles also simplifies development. Future work on the quadrotor platform
could involve the use of quaternions.

6-3-1 State equations

The EKF is used to determine 6 states in the state vector x, including the attitude angles and the
biases of the gyroscope measurements

x = [φ θ ψ λpm
λqm

λrm
]
T

(6-22)

The derivatives of these states are calculated with:

φ̇ = (pm − λpm
− wpm

) + sinφ tan θ(qm − λqm
− wqm

)

+ cosφ tan θ(rm − λrm
− wrm

) (6-23a)

θ̇ = cosφ(qm − λqm
− wqm

) + sinφ(rm − λrm
− wrm

) (6-23b)

ψ̇ =
sinφ

cos θ
(qm − λqm

− wqm
) +

cosφ

cos θ
(rm − λrm

− wrm
) (6-23c)

λ̇pm
= wλ̇pm

(6-23d)

λ̇qm
= wλ̇qm

(6-23e)

λ̇rm
= wλ̇rm

(6-23f)

Where the inputs u are the measurements of the rate gyroscopes:

u = [pm qm rm]
T

(6-24)

And the process noise vector w

w =
[

wpm
wqm

wrm
wλ̇pm

wλ̇qm
wλ̇rm

]T

(6-25)

6-3-2 Measurement equations

The measurements z are from the 3 axis accelerometer and the 3 axis magnetometer:

z = [Axm
Aym

Azm
Mxm

Mym
Mzm

]
T

(6-26)
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Axm
= g sin θ + vAxm

(6-27a)

Aym
= −g cos θ sinφ+ vAym

(6-27b)

Azm
= −g cos θ cosφ+ vAzm

(6-27c)

Mxm
= cos θ cos(ψ + ψroom)Mx0

+ cos θ sin(ψ + ψroom)My0 − sin θMz0 + vMxm
(6-27d)

Mym
= (sinφ sin θ cos(ψ + ψroom) − cosφ sin(ψ + ψroom))Mx0

+(sinφ sin θ sin(ψ + ψroom) + cosφ cos(ψ + ψroom))My0

+sinφ cos θMz0 + vMym
(6-27e)

Mzm
= (cosφ sin θ cos(ψ + ψroom) + sinφ sin(ψ + ψroom))Mx0

+(cosφ sin θ sin(ψ + ψroom)) − sinφ cos(ψ + ψroom))My0

+cosφ cos θMz0 + vMzm
(6-27f)

(6-27g)

Note that the equations of the accelerometers are simplified and the velocity and acceleration
parts of the equations are removed and thus a static measurement is assumed. In real flight this
is not the case, so the measurement equations are not a correct model in this case.

And the measurement noise vector v

v =
[

vAxm
vAym

vAzm
vMxm

vMym
vMzm

]T
(6-28)

6-3-3 Results

For testing of the state estimation the quadrotor is simulated to fly a path with movements in all
directions.

In appendix F-1 the results of the filter using these data is shown. The filter is observable
and stable, but it is clear that the tracking of the angles is not possible, due to the bias of the
accelerometers. When the bias walk of both accelerometer and gyroscopes is decreased by a
factor 10 as shown in appendix F-2, the filter is better able to track the angles much better.

6-3-4 Discussion

In a static case ideal accelerometers give a direct indication of the attitude. The accelerometers
measure the gravitation of the earth which points downwards. But in a dynamic case onboard
the quadrotor, the measurement of the accelerometer is also influenced by the acceleration and
velocity of the quadrotor. Also the bias of an MEMS quadrotor is in reality not equal to zero and
shows random walk. Therefore, for correct estimation of the angles of the quadrotor an additional
measurement is necessary in order to estimate this bias of the accelerometer and determine position
and velocity, which will be done in the next section.
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6-4 Full positioning system using IR-sensors

The full positioning system using IR-sensors extends the standard Attitude and Heading Reference
System (AHRS) with a number of IR-sensors, see 6-3.

3-axis accelerometers

rate gyros 3-axis magnetometerpm, qm, rm 16 state EKF

x, u, y, v, z, w

λAxm
,λAym

,

λAzm

φ, θ, ψ

λpm
,λqm

, λrm

Mxm
, Mym

, Mzm

Axm
, Aym

, Azm

6x IR-sensor
x1m

, x2m
, y1m

y2m
, z1m

, z2m

Figure 6-3: EKF Full positioning system using IR-sensors

6-4-1 State equations

The state vector x includes position (in earth fixed frame), velocity (in body-fixed frame), the
biases of the accelerometers, the attitude angles (in earth fixed frame) and the biases of the
gyroscopes:

x =
[

x y z u v w λAxm
λAym

λAzm
φ θ ψ λpm

λqm
λrm

]T
(6-29)

The derivatives of these states are calculated with:

ẋ = (u cos θ + (v sinφ+ w cosφ) sin θ) cosψ − (v cosφ− w sinφ) sinψ (6-30a)

ẏ = (u cos θ + (v sinφ+ w cosφ) sin θ) sinψ + (v cosφ− w sinφ) cosψ (6-30b)

ż = −u sin θ + (v sinφ+ w cosφ) cos θ (6-30c)

u̇ = Axm
− λAxm

− wAxm
− (qm − λqm

− wqm
)w + (rm − λrm

− wrm
)v

−g sin θ (6-30d)

v̇ = Aym
− λAym

− wAym
− (rm − λrm

− wrm
)u+ (pm − λpm

− wpm
)w

+g cos θ sinφ (6-30e)

ẇ = Azm
− λAzm

− wAzm
− (pm − λpm

− wpm
)v + (qm − λqm

− wqm
)u

+g cos θ cosφ (6-30f)

λ̇Axm
= wλ̇Axm

(6-30g)

λ̇Aym
= wλ̇Aym

(6-30h)

λ̇Azm
= wλ̇Azm

(6-30i)

φ̇ = (pm − λpm
− wpm

) + sinφ tan θ(qm − λqm
− wqm

)

+ cosφ tan θ(rm − λrm
− wrm

) (6-30j)

θ̇ = cosφ(qm − λqm
− wqm

) + sinφ(rm − λrm
− wrm

) (6-30k)

ψ̇ =
sinφ

cos θ
(qm − λqm

− wqm
) +

cosφ

cos θ
(rm − λrm

− wrm
) (6-30l)

λ̇pm
= wλ̇pm

(6-30m)

λ̇qm
= wλ̇qm

(6-30n)

λ̇rm
= wλ̇rm

(6-30o)

Where the inputs u are the measurements of the gyroscopes and the accelerometer:

u = [pm qm rm Axm
Aym

Azm
]
T

(6-31)
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And the process noise vector w

w =
[

wpm
wqm

wrm
wλ̇pm

wλ̇qm
wλ̇rm

wAxm
wAym

wAzm
wλ̇Axm

wλ̇Aym

wλ̇Azm

]T

(6-32)

6-4-2 Measurement equations

The measurements z are from the 3 axis magnetometer and the 6 infrared sensors:

z =
[

Mxm
Mym

Mzm
IRx1m

IRx2m
IRy1m

IRy2m
IRz1m

IRz2m

]T
(6-33)

Mxm
= cos θ cos(ψ + ψroom)Mx0

+ cos θ sin(ψ + ψroom)My0 − sin θMz0 + vMxm
(6-34a)

Mym
= (sinφ sin θ cos(ψ + ψroom) − cosφ sin(ψ + ψroom))Mx0

+(sinφ sin θ sin(ψ + ψroom) + cosφ cos(ψ + ψroom))My0

+sinφ cos θMz0 + vMym
(6-34b)

Mzm
= (cosφ sin θ cos(ψ + ψroom) + sinφ sin(ψ + ψroom))Mx0

+(cosφ sin θ sin(ψ + ψroom)) − sinφ cos(ψ + ψroom))My0

+cosφ cos θMz0 + vMzm
(6-34c)

IRx1m
=

xroom − x

cosθcosψ
+ vIRx1m

(6-34d)

IRx2m
=

x

cosθcosψ
+ vIRx2m

(6-34e)

IRy1m
=

yroom − y

cosφcosψ
+ vIRy1m

(6-34f)

IRy2m
=

y

cosφcosψ
+ vIRy2m

(6-34g)

IRz1m
=

−z
cosφcosθ

+ vIRz1m
(6-34h)

IRz2m
=

zroom + z

cosφcosθ
+ vIRz2m

(6-34i)

And the measurement noise vector v

v =
[

vMxm
vMym

vMzm
vIRx1m

vIRx2m
vIRy1m

vIRy2m
vIRz1m

vIRz2m

]T

(6-35)

6-4-3 Results

In appendix H-1 the results are shown using the simulation data in the full filter. It is clear that
the filter is stable and able to estimate the states. The estimate of the angles and gyroscope
biases is much more accurate than of the AHRS filter. When the bias walk of both accelerometer
and gyroscopes is decreased by a factor 10 as shown in appendix H-7, the filter is still able to
track the states within a certain bound.

The condition number of the observability (or observability degree) is in the order of 104,
which is excellent.
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6-4-4 Observability analysis - Reduction of the number of IR sensors

In practice it may be possible that not all IR sensors can be used for measurements. In the
quadrotor built for test flights only 5 IR measurements are available (section 7-3-6). Therefore
also simulations are done with only using 5, 4 and 3 sensors, by multiplying the H matrix with
an matrix diag([Hselect]). Simulations in appendices H-2, H-3, H-4 , H-5 show that for 5 and 4
infrared sensors the filter is observable and the states can be estimated. When using four infrared
sensors worst results are obtained when using 2 measurements in the Z direction. However for
three infrared sensors (appendix H-6) the filter is not observable and in this way the states cannot
be properly estimated, the condition number of the observability matrix is also very high (1017).

6-5 Conclusions

In this chapter the Extended Kalman Filter theory is applied with the design of two different fil-
ters, an AHRS filter and a full Kalman filter using infrared sensors. It is shown in simulation that
the AHRS filter is stable when estimating the attitude angles and biases of the gyroscopes when
the bias walk of the accelerometers and gyroscopes is not too large. However when introducing
larger bias walks on the inertial sensors the filter becomes less stable. The angles estimated
in this filter are also not optimal as the measurement equation of the accelerometers are simplified.

Therefore an other filter is introduced using infrared sensors to get an position measure-
ment. Simulation shows that this filter can correctly estimate the states and thus improves
the estimation of the attitude angles. When the bias walk parameters of the accelerometers
and gyroscopes are decreased it is shown that the filter is still capable of tracking the states.
Furthermore it is shown that the filter is still observable when not using 6 infrared sensors but
also with 5 or 4 sensors. When using only 3 infrared sensors, the filter is unobservable and correct
estimation of the states cannot be performed.

6-6 Recommendations

The Extended Kalman Filter has is drawbacks as mentioned in 6-1-2, so instead of the using the
Extended Kalman Filter, either the Iterated Extended Kalman Filter, the Unscented Kalman
Filter or the Hybrid Kalman - Minimax filter could be evaluated.

In more practical implementations it is very hard to estimate the initial noise parameters
or the noise parameters change over time, therefore evaluation of the modified recursive maximum
likelihood (MRML) adaptive filter would be interesting as described in section 9-5-3.
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Chapter 7

Design of the test platform

A test platform is designed in order to teste the filter with real data.
For this project the quadrotor hardware developed at the ESL [de Hoop, 2007] is used as a basis.
This design includes a 5 DoF IMU, a compass and a pressure sensor implemented on a Silverlit
X-ufo frame and allows the quadrotor to be manually controlled via a FPGA board. After the
lab project for which this board was initially developed, it was found that the initial design could
be improved. Together with Christophe de Wagter, one of the founders of the MAVLab and my
daily supervisor, a new version of the hardware is developed, which is an improvement on the
previous design and allows indoor navigation.

This chapter starts with describing the original hardware onboard the ESL quadrotor. Then the
requirements of the hardware for this project and the decisions in improving the hardware are
elaborated. A final conclusion is given and recommendation for future developments.

7-1 Original hardware

The original hardware onboard the ESL quadrotor included a 5 DoF IMU, a compass and a
pressure sensor implemented on a toy Silverlit X-ufo frame and allowed the quadrotor to be
manually controlled via a FPGA board by an experienced pilot. An overview of this hardware
can be seen in figure 7-1 and is listed in table 7-1.

7-2 Requirements

From results with the previous design and the requests of this research project the following
requirement for the new design are set:

Full AHRS With the current sensors no complete AHRS is possible, where three axis measure-
ments are available for accelerometers, gyroscopes and magnetometer. A measurement of
the body yaw rate r and the z axis magnetic force is necessary. Note that the compass is
also capable of outputting the x and y axis magnetic forces.
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Figure 7-1: Original Hardware ESL Quadrotor

Indoor position measurement To be able to fly autonomous, a position measurement is neces-
sary. This position measurement can then also be used to obtain full indoor state estimation.

Improvement of the engines The engines on the Silverlit X-Ufo experienced two problems.
First of all they do not provide enough lift for the old design to be equipped with a battery
pack that allows a flighttime for more than 5 minutes. Also the engines on the Silverlit
X-Ufo are toy engines, so not designed for frequent use as the lift power of the engines were
found to be decreasing quickly in time.

Keep within reasonable budget Another challenging requirement is to keep costs as low as
possible, as funds for this project are limited.

7-3 New hardware design

In table 7-1 the components of the new design are listed. How they are connected is shown in
figure 7-2. The next subsections will explain the choice for each component.

Part Original New Measurements
Microprocessor Atmega 128 Atmega 2560 -
3 Axes accelerometer ADXL 330 ADXL 330 Axm

, Aym
, Azm

2 Axes gyroscope IDG 300 IDG 300 pm, qm
1 Axis gyroscope - ADXRS 150 rm
Compass HMC6352 - ψm or Mxm

, Mym

3 Axes magnetometer - MicroMag3 Mxm
, Mym

, Mzm

Pressure sensor SCP-1000 - Pam
6x Infrared Sensor - Sharp GP2Y0A02YK IRx1m

, IRx2m
, IRy1m

IRy2m
, IRz1m

, IRz2m

Frame Silverlit X-UFO Draganfly -
FETs FDS9926 IRLZ44NS -

Table 7-1: Hardware changes
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Figure 7-2: New hardware layout

7-3-1 Microprocessor: Atmega 2560

Originally the print was equipped with the Atmega 128 microprocessor, however for the imple-
mentation of more analog sensor more A/D channels were required. After tests with the Maxim
BCAP+ A/D converter it was found these also induced some problems. For the easy of imple-
mentation the Atmega 2560 was choosen with 16 A/D channels.

7-3-2 3-Axis accelerometer: ADXL 330

In the original design included the 5 DoF IMU as sold by Sparkfun. This is a breakout board which
includes an ADXL330 three axis accelerometer and an IDG300 dual axis gyroscope. Initially the
accelerometers were set up too sensitive, and filtering needs to be applied to get proper results.
Experience at the MAVLab shows it is important to perform the filtering in the correct order:

1. Mechanical filtering
Mechanical filtering filters out the direct vibrations by the engines due to the rigid connection
of the parts parts, this can be done by separating the vibrating frame from the sensor
with an spring-damper system. It is important to select the correct properties for this
system, as too much damping results in no measurements at all, too little damping will
result in measurement outside the sensor range. In the test set-up the PCB is separated
from the frame with foam, which was selected from the various types of foams available at
the MAVLab. This solved most sensitivity issues with the accelerometers.

2. Electronic filtering
The output of the ADXL330 has a typical bandwidth of greater than 500 Hz. The user must
filter the signal at this point to limit aliasing errors. The analog bandwidth must be no
more than half the analog-to-digital sampling frequency to minimize aliasing. The analog
bandwidth can be further decreased to reduce noise and improve resolution. The ADXL330
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has provisions for band limiting the output pins. Capacitors must be added at these pins to
implement low-pass filtering for anti aliasing and noise reduction. The cutoff frequency for
such a filter is given by:

fc =
1

2πRC
Hz (7-1)

The internal resistor has a value of nominal value of 32 kΩ. On the breakout board capacitors
of 0.1µF are used, which results in a cutoff frequency of about 50 Hz. Tests with full engines
running showed that noise reduction was not satisfactory, therefore capacitors of 0.47µF are
installed to reduce the frequency to around 10 Hz, which gives proper noise reduction.

3. Software filtering
This is the final step in filtering, as described in chapter 6 and 8

After filtering the signal mechanically and electronically, the ADXL 330 could be properly used.
As the combination of sensors on the IMU of Sparkfun formed a reliable, inexpensive and easy to
implement solution, it was decided to keep this part in the new design.

7-3-3 2-Axis gyroscope: IDG 300

The gyroscopes in the IDG 300 are also mechanically filtered as the whole PCB is separated from
the frame with the same foam. The electronic filtering of the gyroscopes was already mentioned in
[de Hoop, 2007] and are adjusted: the capacitor on the breakout board is 0.1µF and the resistor
is replaced with a 33kW resistor so the new cutoff frequency is about 48Hz.

7-3-4 1-Axis gyroscope: ADXRS 300

An extra gyroscope is added in order to have measurement in all three directions. The gyroscopes
on the IDG 300 have a 500o/s range. For the gyroscope measuring the body yaw rate this high
range is not necessary, as this is a slower motion. For the new version the ADXRS 300 is used,
with an 300o/s range as it was already available at the MAVLab.

7-3-5 3-Axis magnetometer: Micromag3

Originally the compass module HMC6352 from Sparkfun was used, but some issues were found:

• Measurements had low refresh rate of 20 Hz.

• In yaw angle mode, the compass only gave correct yaw angle when pitch and roll are zero.

• Compass can be read out with separate X and Y value in sequence and also Z can be
estimated to get a correct yaw angle in pitch and roll (explanation in [Cho and Park, 2003]),
but still there are some issues:

– An higher higher refresh rate is preferred: now it is only 10 Hz maximum, because of
two measurements X and Y at 20 Hz.

– The magnetometer Z axis value is an estimate and validity depends on estimated incli-
nation angle, which is not optimal.

To solve this issues the Micromag3 from PNI was selected, with 3 axis magnetometer measure-
ments at a selectable refresh rate. The refresh rate and resolution can be selected by adjusting
the command send to the Micromag to set the division ratio of the L/R oscillator. The division
ratio applied to the L/R oscillator is set to /256 resulting in a maximum sampling delay of 4.0 ms
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per channel when the sensor being sampled is in a zero field, which allows the three measurements
to be done within the 100Hz and having sufficient resolution.

7-3-6 Infrared sensors: 5x Sharp GP2Y0A700K0F, 1x Sharp GP2Y0A02YK

After some initial modifications, the pressure meter on the old design did measure the pressure
properly, but the measurements itself had no use in indoor environments to estimate height. In
ideal situations the pressure sensor can be used to measure with an precision up to of 8cm two
times a second or with a precision of 20 cm nine times a second. In indoor environments the
pressure is disturbed by indoor airflows such as air-conditioning.
For full state estimation also a more accurate measurement are preferred at a higher refresh rate.

Next, experiments with Maxbotic ultrasonic range finders (or sonars) were performed, also
available at the MAVLab. These lightweight sensors have a 0.17-6.54 meter measurement range
and readings can occur up to every 50ms (20Hz rate). The sensors are available with various
beam widths [MAXIM, 2008].
Theses test showed that their measurements are disturbed by sounds of the rotor and gears,
which are apparently in the same sonic range. Test show that the LV-MaxSonar R©-EZ1, with
a smaller beam than the LV-MaxSonar R©-EZ0 has much better results, because of its narrower
beam, but still the measurements needed a lot of filtering and do not allow measurements at
higher refresh rates than 10Hz after filtering.

IR sensors were ultimately chosen because of its, low cost, light weight, and unlike sonar,
it does not give erroneous result when it is sensing at an angle with target surface.

Initially the Sharp GP2Y0A02YK was selected for the range measurements, due to pay-
load constraints on the EWI quadrotor. It was found out their range was too small for
practical implications. Therefore the the IRLI-300 would be a good option, which is a im-
provement of the Sharp GP2Y0A02YK, however manufacturing of this sensor is halted. The
Sharp GP2Y3A003K0F is also a good option, BUT three times as expensive as the GP2Y0A02YK.

With increased payload capacities of the new Draganfly frame it is possible to use the
Sharp GP2Y0A700K0F which is much larger but has also a much larger range. In the practical
application it was found that the IR measurement pointing upwards is too much disturbed by
the fluorescent lamps in the testing environment, so this IR was not installed. A big drawback
of the GP2Y0A700K0F is that it has an effective range of minimum 100cm. Below 100cm the
measurement cannot be used, therefore an GP2Y0A02YK to measure in the range of 20-100cm.
In table 7-2 the infrared sensors are compared.

The new version will be equipped with 6 infrared sensors (2 times x, y and z) for double
measurements in the x and y direction and a single measurement in the z downwards direction.
Note that in initial simulations the IR sensor in upward direction is also simulated.

Brand Type Size (lxwxh) [mm] Weight (est.) [g] Range [cm] Notes
Sharp GP2Y0A700K0F 60x37x22 16 100-550
Sharp GP2Y0A02YK 37x22x19 5 20-150
Sharp GP2Y3A003K0F 53x18x20 9 40-300 Wide angle
IRLI IRLI-300 45x25x25 7 20-300 No availability

Table 7-2: Infrared sensors overview
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7-3-7 Frame: Draganfly

At the start of this project it was found that the Silverlit X-Ufo frame was not sold any more
and only available via the second hand market. In cash of a crash, extra parts are also scarcely
available. However the major problem with the Silverlit X-Ufo frame is due to the engines. These
toy engines are very quickly deteriorating, resulting in a decrease in lift. Because engine wear
down was not similar for all engines, lift decrease was also not evenly over all engines. This
effected flight quality very seriously. Because a minimum lift could not be guaranteed with the
engines, there was not enough headroom using this engines to increase payload. Also replacement
engines were limited available, which is not an ideal situation.

The frame of the Draganfly as described in 2-4 is also separately available. It is not more
expensive than the Silverlit X-ufo. The Silverlit X-Ufo frame set is not sold separately, but
the package is sold for e100,- versus the standalone Draganfly frame for e140,-. The frame is
designed for professional use and very robust. Parts and expansions sets are also available for
separate order, so ideal for this ongoing project. The Draganfly kit is designed to carry larger
payloads such as cameras, so there is enough lift power available to equip the hardware with more
sensors.

On the testbed the PCB is separated from the frame by a piece of foam for mechanical
filtering, as described in section 7-3-2.

7-3-8 FETs: IRLZ44NS

The standard engines on the Draganfly frame are also DC engines, but are for more energy
consuming than the Silverlit engines. The method selected by Marc de Hoop to control the
speed of DC motors is by pulse-width-modulating the supply voltage of the motors. The current
that flows through the Draganfly motors is estimated to be maximum of 10A, so a Field Effect
Transistor (FET) is selected combine fast switching with a low resistance. The FDS9926 FETs
on the original design, cannot handle the high current required by the Draganfly engines.
On the original Draganfly board, the IRLZ44NS FETs are used, which were also selected for
the new design. With an RDS(on)

of 0.022mΩ at a gate-source voltage of 4.0 V, this has similar
properties as the FDS9926 and can also be used with the Silverlit engines.

7-3-9 Sensor placement

From previous experiments at the MAVLAB it is known that in a Magnetic, Angular Rate, and
Gravity (MARG) system the placement of the sensors is very important. The sensors should be
placed as close as possible to the centre of gravity of the vehicle. Of course it is not possible to
place all sensors in the Centre of Gravity (CoG), and a decision should be made which sensor is
most critical. Also the PCB will not be placed in exactly the CoG. Therefore the sensors are
placed in the centre of the print as good as possible. Because the accelerometers are most critical
in placement, these will be placed closest to the centre point of the print.

7-3-10 Miscellaneous

Originally the quadrotor was powered with an external power cable. Because the power cable
had its own magnetic field, it distorted the measurement of the magnetometer. As the frame now
provides more lift it is replaced with a 1800mAh 11.1V battery.
To be able to fly the quadrotor wireless, a radio controller receiver is connected, now the
quadrotor can be controlled with the radio controller Graupner MC22. On the new design an I2C
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connector is available, so the board can be extended with a brushless motor controller in the future.

7-4 Results & Conclusions

A new version of the quadrotor is built implementing the hardware changes described in this
chapter with all hardware and onboard software working and possible of measuring all the sensors.
In the next chapter the onboard filtering and control will be elaborated, in order to make it flyable
for unexperienced pilot, see figure 7-3. In appendix D the schematics of the hardware can be
found. The total costs of the all the hardware is about 645 e(table 7-3) using as much inexpensive
parts as possible. This quadrotor is a very inexpensive solution to test various state estimation
and control strategies in practice in the future.

Figure 7-3: Flying quadrotor

Item Estimated costs
Sparkfun IMU 5 DoF 90 e
Sparkfun gyro ADXRS300 55 e
Sparkfun magnetometer MicroMag3 50 e
6 x Infrared sensors 95 e
Draganfly frame 175 e
PCB fabrication 50 e
PCB components 30 e
Battery 1800mAh 11.1 V 60 e
Remote controller receiver 40 e
Total 645 e

Table 7-3: Cost estimation
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7-5 Recommendations

With the new design there are many new options for further development:

• The current sensors biases of the IMU are very unstable, therefore improving the IMU sensors
will improve navigation accuracy and thus flight quality.

• Because of the positioning of the IR sensors, the measurements of each sensors shows in-
terference with the other IR sensors. To overcome this problem, only switching on the IR
sensor that is sampled by the ADC removes this effect. When using the current IR sensor,
the GP2Y0A700K0F, an extra switch board need to be implemented as the average supply
current of the sensor is high (30mA). It would be interesting to use the GP2Y3A003K0F wide
angle IR sensor, which already has this switching implemented. This sensor has a smaller
range, 3 meters, but then wide angle measurements possible, which could also be used for
simultaneous localization and mapping of the environment, which is for example described
in [Arras, 2003].

• Several sensors could be added, such as an optical flow sensor, GPS or camera’s.

• Changing the engines to brushless variants to provide more thrust.

• Instead of the cable to send the data to the computer, a high bandwidth wireless link could
be used. Or the data could be logged on a flash memory card.

• To provide more onboard calculation power, a better micro controller can be installed.
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Chapter 8

Onboard filtering and control

In chapter 6 it is shown that with the use of three gyroscopes, three accelerometers, three magne-
tometers and five infrared sensors it is possible to perform full indoor state estimation. Also an
control method is designed that is able to control the quadrotor using these states in simulation in 4

Initially the plan was to send the measurements from the quadrotor to a desktop com-
puter, run the state estimation off board and send the motor commands back to the quadrotor.
However test showed that this sequence of downlink, offboard processing and uplink induced a
too large lag in the control. Therefore in order to do test flights also filtering and control needed
to be implemented onboard the quadrotor, in such way that the motors are updated at their
maximum speed. In the design of the onboard filtering and control a quick noisier response is
preferred above any delay. Therefore onboard filtering for control is optimised for speed and not
for quality.

Calculation of the full fifteen state Kalman filter is not possible onboard of the quadrotor
as computation power onboard the current quadrotor is limited. The quadrotor hardware is
equipped with the Atmel Atmega2560 8-bit Microcontroller with 256K Bytes flash memory which
is optimised for fixed point arithmetics. This core does not have floating point arithmetics built
in those are emulated by software. The use of fixed point arithmetics in filtering and control is
highly recommended in order to obtain maximum performance, therefore only basic filtering is
implemented onboard which allows the quadrotor to be stabilised in the attitude loop in order
to perform flight tests. The data from the sensors is then processed offline in a filter. In future
design of the quadrotor with more available calculation power, the full filter can be applied
onboard.

This chapter starts with explaining the optimised onboard processing. The next section
explains the onboard fixed point Kalman filtering to calculate the attitude angles for roll and
pitch and correct the gyroscopes for their biases. Next the calculation of the yaw angle is
explained.

8-1 Optimised onboard processing

Onboard the quadrotor one main loop is running and several processes run within this loop, which
is depicted in 8-1. Each process is triggered at a different moment so not all processes are always
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Figure 8-1: Processes that run in the main loop. The main loop runs at about 1526 Hz. One out
of four loops the filtering of the signals and calculation of additional control commands is processed,
effectively at 381 Hz. In each of the other three loops two measurements are send down to the
PC. At about 50Hz the RC commands are processed, at 100.8605 Hz the PC connection reset is
triggered.

executed in the main loop. The processes cannot take too long otherwise the main loop is not
running at the optimised speed.

Main loop

The main loop waits on the measurement of the all three gyroscopes by the analog-digital converter
(ADC) at about 1526 Hz (+/- 20). This frequency is not constant, as the processing of the
interrupt is not equal for every time step. In this fast loop the commands of the control feedback
are allocated to the motors, see also section 8-4.

1. Gyroscope X 2. Gyroscope Y 3. Gyroscope Z
4. Accelerometer X 5. Accelerometer Y 6. Accelerometer Z

7. Gyroscope X 8. Gyroscope Y 9. Gyroscope Z
10. Battery 11. Channel 1 12. Channel 2

13. Gyroscope X 14. Gyroscope Y 17. Gyroscope Z
16. Channel 3 17. Channel 4 18. Channel 5

19. Gyroscope X 20. Gyroscope Y 21. Gyroscope Z
22. Channel 6 23. Channel 7 24. Channel 8

Table 8-1: Read order of the analog digital converter. The channels are the free connectors where IR
sensors or other sensors can be connected. After reading channel 8 a flag is set that all measurements
are read. Each pack of 6 channels is sent down at about 1526 Hz = ( Clock frequency / prescaler / nr.
of channels / (time of one ADC cycle + average time of ADC interrupt) = 16000000/128/6/(13.5+
0.15)). All channels are sent down every 1526/4 = 381 Hz.
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Process radio controller commands

The radio controller Graupner MC22 sends Pulse-Position Modulation (PPM) signals and these
are received with the RC receiver, connected to an input capture pin. Every time the input capture
pin is triggered the pulse width is checked. After six correct signals a flag is set. When this flag is
set the current state of the radio controller is used as input for the feedback controller to be able
to control the quadrotor. New measurements in all channels are received at about every 50 Hz.

Processes magnetometers

The magnetometer is connected to the Serial Peripheral Interface (SPI) of the processor. Because
the measurement of the magnetometer takes some time (depending of the resolution setting) the
data ready pin of the magnetometer is connected to an input capture pin, that is triggered as soon
as the data is ready. In this way there is no need for the main loop to wait until the measurement
is ready. Each of the three magnetometer channels (Mx, My and Mz) is processed subsequently:
first the command for the channel is sent, when the data ready pin is ready the the result is read
(2 bytes) and then the next channel is read.

Filtering of the signals and calculation of additional control commands

This process is triggered when all the measurements of the ADC are read once, and runs at 381
Hz, see table 8-1. Next an fixed point Kalman filter is applied to estimate the roll and pitch angles
and the biases of the gyroscopes (section 8-2) . The roll and pitch angles and the bias corrected
angular velocities p and q are also send back to the feedback controller.

Downlink

When the filtering and control process is not triggered, measurements are sent to the PC in in
pairs of two addresses, shown in table 8-2, when all 19 measurements are send down, nothing is
done until the next downlink reset. A timer clocked with the crystal runs at 100.8065 Hz which
resets the downlink, to ensure a constant time step between sequential packs of data. In order
to be able to sent down the all 19 addresses the original protocol [de Hoop, 2007] is modified to
use a 5 bit address and a maximum data size of 16 bit. The protocol is changed to: 1aaaaadd

0ddddddd 0ddddddd, where a denotes an address bit, and d denotes the actual data.

8-2 Steady state fixed point Kalman filter for roll and pitch
estimate

To improve handling of the quadrotor in flight tests feedback on the angles is implemented. Using
for example a Butterworth (low-pass) filter on the X and Y accelerometer channels, these mea-
surements can be filtered. Then using the following measurement equations of the accelerometer
in the static case, an estimate can be derived of the roll and pitch angles:

Axm
= g sin θ (8-1a)

Aym
= −g cos θ sinφ (8-1b)

Azm
= −g cos θ cosφ (8-1c)
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Address Data Data format

0 ADXL330 acceleration X-axis 10 bits unsigned
1 ADXL330 acceleration Y-axis 10 bits unsigned

2 ADXL330 acceleration Z-axis 10 bits unsigned
3 Micromag X-axis 16 bits 2’s complement signed

4 Micromag Y-axis 16 bits 2’s complement signed
5 Micromag Z-axis 16 bits 2’s complement signed

6 Infrared measurement X-axis 1 10 bits unsigned
7 Infrared measurement X-axis 2 10 bits unsigned

8 Infrared measurement Y-axis 1 10 bits unsigned
9 Infrared measurement Y-axis 2 10 bits unsigned

10 Infrared measurement Z-axis 1 10 bits unsigned
11 Infrared measurement Z-axis 2 10 bits unsigned

12 IDG300 gyroscope X-axis 10 bits unsigned
13 IDG300 gyroscope Y-axis 10 bits unsigned

14 ADXRS300 gyroscope Z-axis 10 bits unsigned
15 Battery level 10 bits unsigned

16 Remote controller - Throttle 16 bits unsigned
17 Remote controller - Roll 16 bits unsigned

18 Remote controller - Pitch 16 bits unsigned
19 Remote controller - Yaw 16 bits unsigned

Table 8-2: Downlink address map, the address are sent in pairs of two. The whole pack of data is
sent down at 100.8065 Hz

For small angles the roll and pitch angles can be approximated:

φm ≈ − sin(
180

π
)
Aym

g
(8-2a)

θm ≈ sin(
180

π
)
Axm

g
(8-2b)

However the Butterworth filtering induces a phase lag. Therefore in the quadrotor two Kalman
filters (figure 8-2) are implemented to have an minimal lag, using the measured angular rates p
and q as input, the states are roll and pitch and the biases of the gyroscopes and the measurements
are the accelerometers in X and Y direction using the approximated equations (equation 8-2).

rate gyro Y accelerometer
pm

2 state KF

φ

λpm

φm

(a) Roll angle

rate gyro X accelerometer
qm

2 state KF

θ

λqm

θm

(b) Pitch angle

Figure 8-2: Time invariant Kalman filters

In order to reduce calculation time a simplified time invariant (steady state) Kalman filter is used
with a constant gain K. The Kalman filter runs in three steps:

1. State prediction

(

φ
λpm

)

=

(

1 −dt
0 1

)(

φ
λpm

)

+

(

dt
0

)

pm (8-3)
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2. Measurement update

φm = C Aym
(8-4)

3. State correction

(

φ
λpm

)

=

(

φ
λpm

)

+ K (φ− φm) (8-5)

where:

• dt is the timestep between the measurements. In the actual calculation onboard this is set
to 1, increasing the resolution of the estimation of φ by scaling it with a factor 1/dt.

• pm is the raw input from the gyroscope, already corrected for the ADC bias using a static
measurement;

• Aym
is the raw input from the accelerometers, already corrected for the ADC bias using a

static measurement;

• K is a 2x1 matrices containing the fixed Kalman gains. The Kalman gains are tuned by
trial and error: K = [−1/4001/4000000]T

• C is the constant that defines the linearised relationship between the measurements of the
accelerometers and the angles. C = −100;

Using the same equations θ and λq are estimated, replacing φ, φm, pm, λpm
and Aym

with θ, θm,
qm, λqm

and Axm
using the same dt and K and using C = 100. The estimated angles are bounded

in order to overcome overflow of the integrator. Using this simplified Kalman filter induces some
errors:

• The body angular rates from the body-fixed frame are integrated to the angles in earth-fixed
frame and not transformed to the earth-fixed frame before integration. Only for small angles
this approximation is possible.

• The measurement equations are linearised version for small angles of the actual relationship
between the accelerometer and attitude angles in steady state.

• The timestep of the loop is not equal for each loop, so the integration step is not constant.

8-3 Yaw estimation

Onboard the quadrotor the r angular rate is measured by a better gyroscope, the ADXRS300.
Tests showed that this gyroscope has a much smaller bias and therefore bias estimation of this
gyroscope is less vital to the flight performance. Also the yaw angle can be estimated accurately
with the magnetometer.

The yaw angle can be calculated with [Cho and Park, 2003]:

ψ = tan−1

(−YH
XH

)

(8-6)
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Pp 10
Pq 10
Pr 5
Pθ 20/128
Pφ 20/128
Pψ 5
PRCThrottle

1/6
PRCRoll

−1/8
PRCPitch

−1/8
PRCYaw 1/8

Table 8-3: Gains of the implemented feedback controller

Where:

YH = Mym
cosφ−Mzm

sinφ (8-7)

XH = Mxm
cos θ +Mym

sin θ sinφ+Mzm
sin θ cosφ (8-8)

For small angles this can be simplified to:

ψ = tan−1

(−Mym

Mxm

)

(8-9)

This calculation of the arctan is done onboard with a lookup table, in order to maximize speed.

8-4 Feedback controller

The control commands to the motors are calculated in two steps. First in equation 8-10 the
commands U for throttle, roll pitch and yaw are calculated.

UThrottle = PRCThrottle
RCThrottle + Pz(z − zd) + Pż ż

URoll = PRCRoll
RCRoll + Pφ(φ− φd) + Ppp

UPitch = PRCPitch
RCPitch + Pθ(θ − θd) + Pqq

UYaw = PRCYaw
RCYaw + Pψ(ψ − ψd) + Prr

(8-10)

The part Pz(z − zd) + Pż ż in the throttle command is the height feedback. Horizontal position
control can be done by adjusting the desired roll φd and pitch θd. These are calculated with:

φd = Py(y − yd) + Pẏ ẏ (8-11)

θd = Px(x− xd) + Pẋẋ (8-12)

Horizontal position and height feedback is not implemented at the moment. The desired yaw angle
ψd is set to zero. The gains used onboard are summarized in table 8-3. In the next step the motor
commands are calculated:

Umotor1 = UThrottle + UPitch − UYaw

Umotor2 = UThrottle − URoll + UYaw

Umotor3 = UThrottle − UPitch − UYaw

Umotor4 = UThrottle + URoll + UYaw

(8-13)

The actual relationship between the motor command and the forces generated by the rotor is non-
linear. In [Martinez, 2007] this relationship is measured for the Draganfly motor-rotor system,
and also described in section 3-8 and 4-3. For the motor settings in the flight envelope of hover
and near-hover this relationship is assumed linear.
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8-5 Results

In figures 8-3 and 8-4 two logs show the input of a an experienced pilot in pitch, roll and yaw
from the remote control when flying the quadrotor using different controllers. The pilot was given
the task to hold the quadrotor on a fixed horizontal position with constant thrust setting. When
attitude feedback is enabled the bias of the accelerometer causes an error in the estimation of the
pitch and roll angles, which need to be corrected with a constant value by the pilot. This can
also be done by using the trim settings on the remote controller.

It is clearly visible that enabling only the rate feedback causes the inputs of the pilot to
be much larger than when the attitude feedback is also enabled, also when taking a look in
the frequency domain. For the pilot, when only rate feedback is enabled, the task is expe-
rienced as constantly correcting the attitude angle. When attitude feedback is enabled, the
pilot experiences the task as actual position control. Also, there is no need to control the yaw angle.

With attitude feedback enabled, the quadrotor can be hit on one of the motorhubs in
flight and will automatically stabilize attitude after the disturbance.
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Figure 8-3: Control activity with only rate feedback

R
aw

st
ic

k
in

p
u
t

Time [s]

Single-Sided Amplitude Spectrum

Frequency [Hz]

M
ag

n
it

u
d
e

Pitch
Roll
Yaw

0 1 2 3 4 50 5 10 15
0

50

100

150

200

250

300

350

400

-3000

-2000

-1000

0

1000

2000

3000

Figure 8-4: Control activity with rate and angle feedback
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8-6 Conclusions

To minimise the delay between the measurements of the sensors and the feedback to the controller
the motor commands are not calculated offboard on a desktop computer, but filtering and control is
implemented onboard the quadrotor. In this way the can be used to perform test flights. Onboard
the quadrotor the roll and pitch angles and the biases of the p and q gyroscopes are estimated
using a fixed point steady state Kalman filter. The yaw angle is estimated using the X and Y
magnetometers and a lookup table.
Because the onboard filtering is optimised for performance and not for quality, the controller is
designed to work only for small angles. Flight test show that the control activity of a pilot is
reduced significantly when applying rate feedback.

8-7 Recommendations

The calculation power onboard the quadrotor is limited, but in future the following could be
implemented.

• Perform position estimation from the IR-sensors and derive the velocities of the vehicle.
Next, implement position feedback in the controller.

• Implement onboard correction of the measured values of the magnetometers in order to get
a better estimate of the yaw angle with changing throttle settings, see also 9-1-3;

• After the correction of the magnetometer for the throttle effect, a Kalman filter can also be
implemented similar to the one described for the roll and pitch angles, in order to improve
the estimation of the yaw angle.
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Chapter 9

Indoor navigation with real data

In this chapter the AHRS Kalman filter and the full Kalman filter from chapter 6 are tested with
real data from the quadrotor. First the calibration and preprocessing of the sensor measurements
is explained, then the AHRS Kalman filter is tested, following with full Kalman filter.

9-1 Calibration and Preprocessing

The sensors data of the quadrotor is sent to the computer at 100.8065 Hz and logged. This data is
binary format and should be converted to the appropriate units in order to be able to use the data
in the filter. For the magnetometers and infrared sensors additional preprocessing is necessary in
order to be able to use the data. All calibration parameters can be found in appendix C. An
example of raw data can be found in appendix C-1, the result after preprocessing and calibration
of these measurements is shown in C-2.

9-1-1 Gyroscopes

The measurements of the gyroscopes are in binary format and need to be converted to radians
per second. In order to do this, first the bias is removed, which is measured at a stationary
measurement. This result is then scaled to get radians per second.

9-1-2 Accelerometers

The measurements of the accelerometers are in binary format and need to be converted to meters
per square seconds. Similar to the gyroscope, first the bias is removed, which is measured previ-
ously at a stationary measurement. This result is then scaled to get meters per square seconds.

9-1-3 Magnetometers

The magnetometers measures the vector of the gravity field, so the magnetometer does not need
to be scaled and no biased need to be removed. Due to use of the larger motors in the Draganfly
frame in the final design, an increased effect of the motors on the magnetometer measurement
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Figure 9-1: Comparison of the output of the accelerometer under 4 different
yaw angles with varying throttle settings.

was noticed. The measurements should be corrected for this effect.

In figure 9-2 and 9-1 the effect under four different yaw angles is shown with varying
throttle settings. The difference of the measurement in Mx, My, Mz without increasing throttle
is shown in 9-3. For each of the measurements Mx, My, Mz an second order polynomial is fitted.
This polynomial is used to correct the measurements for the effect of the motors. In the test
the motors were supposed to have equal motor speeds. With roll, pitch and yaw commands the
motors this will not be the case. Because the variations of motors speeds due to the commands
are small this effect is neglected.

After the correction of the magnetometer, the measured vector is normalised for each timestep to
overcome problems with spikes in the measurements.
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9-1-4 Infrared sensors

The measurements of the infrared sensors are disturbed by several factors, as described in 5-4.
Not all of the factors can be ignored before using the calibrated infrared signal as input for the
Kalman filter, as without the filtering the noise characteristics of the infrared measurement are
not ideal and are biased.

In order to remove the measurement interference with the other infrared sensors, for each
sample the maximum of the last n measurements is used. After this still unwanted spikes are
noticed in the filtered signal, which can be a result of the averaging or difference between the
ADC and sensor update rate. In order to overcome those effects a median filter over m number
of samples is used.

This preprocessed signal is then calibrated, assuming a linear relationship between the
inverse of the measurement and the measurement in meters.

IRm =
1

a× IRpreprocessed

+ b (9-1)

where a and b are coefficients depending on the IR sensor and found in appendix C.

The measurements of two IR sensors in Z-direction, both pointing downwards, are fused in
one measurement. For the range below 1 meter, the measurement of the GP2Y0A02YK are
taken, above 1 meter those of the GP2Y0A0700. It is assumed that the IR sensors are placed on
the axis of the body fixed frame and they are corrected with an estimated distance of the IR over
the axis of the body fixed frame to the centre of gravity.

9-2 Results of the AHRS Kalman filter

First the AHRS Kalman filter is tested with three sets of real data. A subsequent movement in
roll, pitch and yaw with and without motors on. Next a real flight test is done in testroom.

9-2-1 Roll, pitch, yaw movement - with and without motors

In appendices G-1 and G-2 the results can be seen for the AHRS Kalman filter on real sensor data
with and without motors on performing subsequently a roll, pitch and yaw move by hand. The Q
and R matrices are tuned by hand. It can be clearly seen that in both cases the filter is stable,
thus the P-matrix converges to one value and that the measurements can be tracked properly.

9-2-2 Flight test

For the test of the Kalman filters in free space, flight test are performed by an experienced pilot
in a prepared testroom (see figure 9-4). The task of the pilot is to keep the quadrotor at an fixed
horizontal position. Therefore the pitch and roll angles should move around zero. Specifications
of the room can be found in appendix C.

In G-3 the results of the AHRS Kalman filter using data from a flight is shown. The fil-
ter is stable (the P-matrix converges) but it is clearly visible that the estimation of the attitude
angles, especially the pitch angle θ are biased.
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Figure 9-4: Testroom setup

9-3 Results of the full Kalman filter

First the quadrotor is hanged in a pendulum construction and an initial deflection in y direction
is given with motors off. The result is shown in appendix I-1. Using a camera fixed on the ceiling
the motion of the quadrotor is traced. The traced motion is not accurate enough to be used
as an exact reference signal, but gives an indication of the motion. After tuning the Q and R
matrices, the full Kalman filter is able to track the motion which shows high correlation to the
camera tracing. However the pitch and yaw angle show a bias with the expected values. Next
a similar experiment is done with motors at 40% power, just not enough to lift the quadrotor,
shown in appendix I-2, again the motion itself is traced correctly, however the yaw angle is not
around zero. The experiment video shows that this is also the case during the test. This video is
however not accurate enough to trace the yaw angle.

In another test a movement of the quadrotor in the testroom is done by hand, results of
this test can be found in appendix I-3. The quadrotor is moved in a square at two different
heights. In I-17 this pattern can be clearly recognised. During the test the attitude angles were
kept as level as possible. However the estimation of the roll angle φ shows an bias of about 5
degrees.

Next the data from the flight test as described in 9-2-2 is filtered with the full Kalman fil-
ter using measurements of the IR sensors in five directions. Again the Q and R matrices are
tuned by hand. The results are shown in appendix H. Most standard deviations of the state
estimation error show clear convergence, the standard deviations of pitch and yaw do also not
diverge but do change over time, which indicate a changed observability over time. After about
15 seconds all the measurements are properly tracked. In I-22 the 3D track after filtering is shown.

9-4 Conclusions

In this chapter the filtering algorithms as derived in 6 are tested on real data. For the AHRS
filter is shown that this filter is able to correctly track roll, pitch and yaw movements with and
without motors on. In real flight however the filter is disturbed by the bias of the accelerometers.
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Therefore it is necessary to estimate the bias of accelerometers as well. This is tested using the
full Kalman filter on the real flight data.

The test shows that the full Kalman filter is stable and capable of estimating the biases
and tracking the measurements. However in tests using real data, some of the states were not
estimated as expected. There could be several reasons for this error:

• First of all in the test with the pendulum motion, an ideal situation was expected, where
only the y, v, v̇, φ should change. In the test with the pendulum motion, it was tried to get
this ideal motion, but off course in reality this motion is not ideal.

• The the sensors onboard the quadrotor could be not aligned perfectly, in the simulation this
is assumed, however the specifications of MEMS gyroscopes and accelerometers show that
there the misalignment internally possible in the order of one degrees. Next to that the
placing of the sensors on the printed circuit board (PCB) could not perfect. Also the PCB
is tightened on the frame with rubber bands on a piece of foam (for mechanical damping),
in order to be able to easily detach the PCB. This does not guarantee that the sensors are
placed on exactly the correct axis. It is also assumed that the infrared sensors are placed on
one of the axis of the body axis frame, however first of all their position is not exactly on
this axis. Next to that it could be that they are not pointing exactly along this axis.

• Placement of accelerometers is assumed in simulation to be in the centre of gravity, on
the real quadrotor this is not possible due to placing limitations, however in the the state
estimation algorithm this is assumed.

• The sensors are send down at 100.8065 Hz. Onboard the quadrotor it is not possible to read
the sensors all at the same time, due to the working of the analog-digital converter. So the
measurements processed are not of exactly at the same timestep.

• The preprocessing of the IR sensors was necessary in order to get the state estimation
working, as the noise of the unprocessed signal was not gaussian. However this preprocessing
does introduce a lag in the measurement and could have other non-beneficial effects.

• In the measurements of the magnetometers it was noticed that the motors create their own
magnetic field and therefore the measurement should be corrected for this bias. The effect
of settings in roll, pitch and yaw were ignored, but differences in the motor speeds due to
these settings could also be of an effect.

• The accelerometers and gyroscopes random walk is in reality not an perfect random walk,
but is bounded.

• The calibration of the sensors could not be perfect. This could be enhanced for different
situations, such as different temperature and vibrations.

• The sensor board damping is tuned by hand. It was found that the signal on the accelerom-
eters and gyroscopes is still very noisy due to the engines. Improved damping could be used
to filter out the noise of the engines even more.

• In each of the test the Q and R matrices are tuned by hand, for optimal tracking these need
to be tuned even more.

9-5 Recommendations

It is proven that the state estimation filter stabilise in practice and gives a state estimation, but
further validation of the state estimation is necessary with a accurate reference states. Next to
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that improvements in sensors and calibration are possible. Because initial and noise parameters of
the sensors onboard the quadrotor are not well known, a modified recursive maximum likelihood
(MRML) adaptive filter can help in determining these parameters.

9-5-1 Validation

Due to time limitations is was not possible to accurately validate the results of the Kalman filtering
with an accurate reference state. Now the Q and R matrices are tuned by hand. An reference
state can be used to not only validate the results but also optimalise the Q and R matrices to get
the best state estimate. Also it can show other if there are other sources of errors. Two accurate
measurement methods that could be used to determine the exact movements of the quadrotor:

• Using several infrared cameras in the room to track at least three infrared LEDs attached
to the frame of the quadrotor, in order to estimate position and attitude.

• Using a camera onboard the quadrotor, as described in [Lagarde, 2008] to track the state of
the quadrotor looking at one or more checkerboard patterns and using the vehicle model.
It is also possible to do this without the vehicle model, with the GML MatLab Camera
Calibration Toolbox [Vezhnevets, 2008].

9-5-2 Sensor improvement

The quality of the state estimation depends obviously a lot on the quality of the sensors. For
now very inexpensive gyroscopes where used in p and q direction, the IDG 300. In r direction
the ADXRS300 was used, which is more expensive, but as test has shown has a more stable bias.
It would be advisable to use this sensor (or similar, but with even an higher sensitivity such as
the ADXRS 150 or ADXRS 401) also for p and q directions. To improve the state estimation it
is also advisable to use also accelerometers with a more stable bias.The calibration of the sensors
can also be improved. For example it is shown that the magnetometer also measures the magnetic
field induced by the motors, this effect can be investigated further. Recently at the department
of Control and Simulation a test facility is build to calibrate gyroscopes and accelerometers very
accurately. This can be used to make the calibrations of these sensors better. Also the damping
of the sensor board could be improved.

9-5-3 Algorithm improvement

Next to better sensors and calibration, the state estimation algorithm can also be improved.
A problem in applying the EKF is that not all necessary a priori information may be known,
such as the measurement noise intensities of the sensors, as in the case with the quadrotor.
Moreover, the EKF is only a first-order minimum variance filter. The higher-order terms neglected
in propagation of the error covariances may lead to biased estimates, as noticed in the simulations.

An alternative approach is to compute a likelihood function from the prediction errors generated
by a nonaugmented EKF and estimate all unknown parameters such as noise intensities, biases,
and scale factors by optimizing this likelihood function with respect to these parameters. This
leads to the so-called iterative maximum likelihood method in which the state trajectory is
estimated in conjunction with these unknown parameters. Among many schemes, the recursive
maximum likelihood (RML) adaptive filter is a typical and well-known example of a general
recursive prediction error identification algorithm. The RML algorithm for adaptive filtering is,
however, sensitive to initialization errors of the unknown system parameters. Divergence may
occur at large values of these initialization errors. In [Chu et al., 1996] a modified recursive
maximum likelihood (MRML) adaptive filter for nonlinear state-parameter estimation problems
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is developed. To improve the robustness of the RML adaptive filter to parameter initialization
errors, the new algorithm revises the conventional RML adaptive filter by including the effect of
the parameter estimator in the prediction error vector computation. The results indicate that
the MRML adaptive filter, produces estimates that are both more accurate and less sensitive to
parameter initialisation errors than those obtained with the conventional RML adaptive filter.

Next to the initialisation errors encountered with the quadrotor sensors the noise intensi-
ties are not constant. The noise intensity of the gyroscopes, accelerometers and magnetometers
change with changing thrust and the noise intensity of the infrared sensors change with the
distance measured. In [Bennis et al., 1999] it is shown that the MRML adaptive filter can
also be applied to estimate non-stationary noise intensities. Because of the fact that for the
MRML adaptive filter the effect of the parameter estimator is included in the prediction error
computation, the possibility exists to introduce time-varying noise statistical uncertainties as
additional stochastic variables instead of constant parameters. From numerical experiments it
could be seen that the original MRML adaptive filter is not able to give a satisfactory estimation
of non-stationary noise statistical parameters. After introduction of noise statistical uncertainties
as random walks instead of constant parameters, the MRML adaptive filter is capable of tracking
the time-varying noise intensity.

Drawback of the MRML adaptive filter is that these require increased computations with
respect to the standard EKF filter. Therefore for application of this filter in control this probably
induces to large lag. However for the application in online model parameter estimation it is
advised to optimise the state estimation and this optimalisation can be applicable.
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Chapter 10

Conclusions

10-1 Conclusions

In this thesis we investigated the feasibility of a filtering approach for autonomous indoor flight
with a quadrotor. From variety of simulations and experiments, the following main conclusions
can be drawn.

• The selected controller structure, a PID controller for each of the states with a special
nested PID controller for the position control is able to successfully stabilise the quadrotor
in simulation and using interpolated waypoint commands a smooth trajectory can be flown.

• The gyroscopes, accelerometers, magnetometers and IR sensors can be described by non-
linear equations when the parameters of the width, length, height and heading with respect
to the magnetic field are known (xroom and yroom, zroom and ψroom).

• The AHRS Kalman filter can estimate the bias of the gyroscopes correctly, but cannot
estimate the attitude angles correctly because of the bias of the accelerometers.

• The full Kalman filter designed for indoor navigation using 6 infrared sensors provides a good
estimation of the states in simulation using realistic values for the noise standard deviation
and can determine the biases of the gyroscopes and accelerometers.

• Observability of the full Kalman filter is guaranteed for systems with the use of a minimum
of 4 sensors in any direction. Clear degradation of the result is found when using 4 instead
of 5 or 6 measurements, however the system is still observable. With the use of 3 infrared
sensors the Kalman filter is unobservable and will not converge to a meaningful solution.

• The observability degree of the Kalman filter using 5 or 6 measurements is very good, in the
order of 103.

• Using the work of the Embedded Systems Lab as a basis, a quadrotor UAV is built with
three gyroscopes, three accelerometers and three magnetometers and six infrared sensors to
test the indoor navigation with data from real sensors.

• Onboard the fixed point processor of the quadrotor filtering and control is implemented,
which stabilises the attitude angles of the quadrotor. The attitude feedback allows even
inexperienced pilots to fly the quadrotor.
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• Actual data from measurements in a test environment show that the state estimation algo-
rithm is stable and able to give an estimates of the states.

10-2 Discussion

The tests with the real data show some unexpected results, therefore some points of discussion on
the conclusions:

• Further verification of the state estimation method is required, comparing the results with
other already proven state estimation methods, such as 3D camera tracking.

• The calibration and preprocessing of the measurement data is vital for the results. The
current calibrations and preprocessing could be improved to enhance results. Also damping
of the sensor board could be improved to minimize the noise due to the motors.

• Exact alignment of the sensors should be validated. The assumptions that the accelerometers
are placed in the centre of gravity and the IR sensors along the axis of the body frame can
influence the result, so their positioning can be implemented in the filter.

• In the Extended Kalman Filter the nonlinear models are linearised every step. However
linearisation can produce unexpected results, so an alternative estimator algorithm could be
implemented, such as the Iterated Extended Kalman Filter, the Unscented Kalman Filter
or the Hybrid Kalman - Minimax filter. In these practical implementations it is very hard
to estimate the initial noise parameters or the noise parameters change over time, therefore
evaluation of the modified recursive maximum likelihood (MRML) adaptive filter would be
interesting, which can estimate these parameters online.

• Drawback of the proposed state estimation algorithm is that the room paramaters (xroom,
yroom, zroom and ψroom) should be specified in advance. However from a static ground mea-
surement, positioning the quadrotor perpendicular to a wall, these values can be estimated
before startup.

10-3 Future work

The quadrotor is a very inexpensive solution to test various state estimation and control strategies
in practice, and therefore numerous options for future work are available:

• The development of the quadrotor UAV can continue by improving the current sensors used
and adding extra hardware, such as camera’s, wireless links and GPS receivers.

• Onboard the quadrotor a position controller can be implemented for autonomous flight. Also
instead of the current PID control, other more advanced controllers can be tested in reality,
with in mind that the quadrotor has only limited onboard calculation capacity.

• Using the state estimation, an online parameter estimation could be developed, which then
can be fed back to for example an NDI controller.

• When combining the infrared sensors with other sensors, such as optical flow sensors, an
indoor flying Simultaneous Localization And Mapping (SLAM) system could be developed,
able to autonomously fly in known and unknown indoor environments.

• Because the developed quadrotor is very inexpensive but successfull platform several quadro-
tors could be used in research in UAV swarm behaviour.
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A-1 Quadrotor

Sampling period [s] dt = 0.01
Gravity constant [m/s2] g = 9.806
Air density [kg/m3] ρ = 1.293
Air viscosity at 20 degrees Celsius [Pa · s] ν = 1.8 · 10−5

Number of propellers P = 4
Arm length [m] L = 0.232
Volume [m3] Vol = 3.04 · 10−4

Total mass [kg] m = 0.53
Vertical distance between CoG and propellers plan [m] h = 0.058

Thrust factor in hover [Ns2] b = 3.13 · 10−5

Drag factor in hover [Nms2] d = 7.5 · 10−7

Inertia components [kgm2] Ixx = 6.228 · 10−3

Iyy = 6.228 · 10−3

Izz = 1.121 · 10−2

Reduction ratio r = 4
Rotor inertia [kgm2] Jr = 6.0100 · 10−5

Slope of the linear curve Ω = f(bin) aΩ = 2.7542
Shift of the linear curve Ω = f(bin) bΩ = 3.627
Number of blades per propeller N = 2
Propeller radius [m] R = 0.15
Propeller disk area [m2] A = π ·R2 = 0.0707
Chord [m] c = 0.0394
Pitch of incidence [rad] θ0 = 0.2618
Twist pitch [rad] θtw = 0.045

Solidity ratio (rotor fill ratio) [rad−1] σ = N ·c
π·R

= 0.1672
Lift slope a = 5.7
Airfoil drag coefficient Cd = 0.052
Helicopter center hub area [m2] Ac = 0.005
Weight of the quadrotor per propeller [N ] Wprop = mg

P
= 1.2993

Propeller speed at hover [rad/s] ΩH =
√

Wprop

b
= 203.7425

Longitudinal drag coefficient Cx = 1.32
Cy = 1.32
Cz = 1.32

Menno Wierema B.Sc. M.Sc. thesis



A-2 Sensors 105

A-2 Sensors

Noise parameters are estimated from real measurement data, using worst case scenarios. The
bias is set to 1 bit of data, which is realistic for an initial error. The random walk variable is set
to 10 bit, which results in realistic random walk.

Gyroscope noise standard deviation [rad/s]
σpm

= 0.0687
σqm

= 0.0486
σrm

= 0.0515

Gyroscope bias [rad/s]
λpm

= (720/457)*(pi/180)
λqm

= (720/437)*(pi/180)
λrm

= (720/696)*(pi/180)

Gyroscope random walk bias [rad/s2]
σ ˙lambdapm

= 10*720/457*(pi/180)

σ ˙lambdaqm
= 10*720/437*(pi/180)

σ ˙lambdarm
= 10*720/696*(pi/180)

Accelerometers noise standard deviation [m/s2]
σAxm

= 1.5247
σAym

= 1.5376
σAzm

= 1.0

Accelerometers bias [m/s2]
λAxm

= 9.81/100
λAym

= 9.81/100
λAzm

= 9.81/100

Gyroscope random walk bias [rad/s2]
σ ˙lambdaAxm

= 9.81/10

σ ˙lambdaAym
= 9.81/10

σ ˙lambdaAzm
= 9.81/10

Magnetometer settings
Declination = 60 degrees
Inclination = 0 degrees

Magnetometer noise standard deviation [-]
σMxm

= 0.0056
σMym

= 0.0068
σMzm

= 0.0024

Room parameters
xroom = 4 [m]
yroom = 4 [m]
zroom = 4 [m]
ψroom = 0 [deg]

Infrared noise standard deviation [m]
σIRx1m

= 0.1
σIRx2m

= 0.1
σIRy1m

= 0.1
σIRy2m

= 0.1
σIRz1m

= 0.1
σIRz2m

= 0.1
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Figure B-1: Simulink model - The implementation of the dynamical model of the quadrotor in
Simulink. This set up allows to set initial states and state commands as input. Optionally a joystick
block can be connected to give commanded states. The motor inversion block is the implementation
of equation 3-44. Instead of the scope with the states a 3D view of the quadrotor can be selected
as output. The sensor and filtering blocks allow testing of several state estimation techniques
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Figure B-2: Simulink model - The quadrotor UAV block consists of three parts. First the motor
block, where the angular speeds of the rotors are calculated from the input voltages. Next block
calculates the aerodynamic forces and moments on the rotors. In the dynamics block the dynamic
equations of the quadrotor are calculated
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Figure B-3: Simulink model - The control block with the nested PID control approach, the position
control sends demanded pitch and roll angles to the rotations control. All control laws are written
in Matlab functions.
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Figure B-4: Simulink model - In the sensor block the measurements of the gyroscopes, accelerom-
eters and magnetometers are generated.
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Calibration parameters

Calibration is done in the lab using know motions and/or positions of the sensors.
Gyro X calibration factor = (720 ∗ π)/(457 ∗ 180) [rad/step]
Gyro Y calibration factor = (720 ∗ π)/(437 ∗ 180) [rad/step]
Gyro Z calibration factor = (720 ∗ π)/(696 ∗ 180) [rad/step]

Accelerometer X calibration factor = 9.8065/100 [m/s2/step]
Accelerometer Y calibration factor = 9.8065/100 [m/s2/step]
Accelerometer Z calibration factor = 9.8065/100 [m/s2/step]

Magnetometer X thrust polynomial coefficients = -62.58
= -3.63
= -2.90

Magnetometer Y thrust polynomial coefficients = 12.09
= 21.90
= 1.52

Magnetometer Z thrust polynomial coefficients = -125.71
= -3.07
= -3.30

GP2Y0A02YK coefficient a = 207.62
GP2Y0A02YK coefficient b = -0.0382

GP2Y0A0700 coefficient a = 905.65
GP2Y0A0700 coefficient b = -0.015

X position horizontal IR sensors = 0.04 [m]
Y position horizontal IR sensors = 0.04 [m]

Z position vertical IR sensors = 0.01 [m]

Test room xroom = 4.05 [m]
Test room yroom = 3.82 [m]
Test room zroom = 2.56 [m]
Test room ψroom = 87 [deg]
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C-1 Raw measurements
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Figure C-1: Raw measurements
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C-2 Preprocessed and calibrated measurements
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Figure C-2: Preprocessed and calibrated measurements
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Schematics

M.Sc. thesis Menno Wierema B.Sc.



116 Schematics

Figure D-1: Schematics of the connections of the Atmega 2560
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Figure D-2: Schematics of the power group

Figure D-3: Schematics of the sensors group

M.Sc. thesis Menno Wierema B.Sc.



118 Schematics

Figure D-4: Schematics of the external connectors
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Appendix E

Comparison between complete
model and simplified model
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Figure E-1: Comparision of complete model (blue) with simplified model (red)
using same simulation parameters.
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Figure E-2: Comparision of complete model (bleu) with simplified model (red)
using same simulation parameters.
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using same simulation parameters.
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F-1 Using realistic sensor parameters
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Figure F-1: AHRS filter results - original states (blue) and filtered states (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; ])
R = diag([2; 2; 1; 3e− 005; 5e− 005; 6e− 006; ])

e φ
[d

eg
]

e θ
[d

eg
]

e ψ
[d

eg
]

e λ
p

m
[d

eg
/s

]

Time [s]

e λ
q
m

[d
eg
/s

]

Time [s]

e λ
r

m
[d

eg
/s

]

Time [s]

0 10 200 10 200 10 20

0 10 200 10 200 10 20

-5

0

5

-5

0

5

-5

0

5

-10

0

10

-1

0

1

-10

0

10

Figure F-2: AHRS filter results - Error (blue), standard deviation of the state estimation error (red)
and RMSE (green).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; ])
R = diag([2; 2; 1; 3e− 005; 5e− 005; 6e− 006; ])
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Figure F-3: AHRS filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; ])
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Figure F-4: AHRS filter results - observability degree.
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; ])
R = diag([2; 2; 1; 3e− 005; 5e− 005; 6e− 006; ])
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F-2 Using 1/10 random walk on sensors
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Figure F-5: AHRS filter results - original states (blue) and filtered states (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; ])
R = diag([2; 2; 1; 3e− 005; 5e− 005; 6e− 006; ])
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Figure F-6: AHRS filter results - Error (blue), standard deviation of the state estimation error (red)
and RMSE (green).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; ])
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Figure F-7: AHRS filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; ])
R = diag([2; 2; 1; 3e− 005; 5e− 005; 6e− 006; ])
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Figure F-8: AHRS filter results - observability degree.
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; ])
R = diag([2; 2; 1; 3e− 005; 5e− 005; 6e− 006; ])
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G-1 Roll, pitch, yaw movements, with motors off
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Figure G-1: AHRS filter results - filtered states (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; ])
R = diag([0.01; 0.01; 0.04; 0.04; 0.04; 0.04; ])
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Figure G-2: AHRS filter results - standard deviation (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; ])
R = diag([0.01; 0.01; 0.04; 0.04; 0.04; 0.04; ])
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Figure G-3: AHRS filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; ])
R = diag([0.01; 0.01; 0.04; 0.04; 0.04; 0.04; ])
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G-2 Roll, pitch, yaw movements, with motors on
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Figure G-4: AHRS filter results - filtered states (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; ])
R = diag([0.01; 0.01; 0.04; 0.0001; 0.0001; 0.0001; ])
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Figure G-5: AHRS filter results - standard deviation (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; ])
R = diag([0.01; 0.01; 0.04; 0.0001; 0.0001; 0.0001; ])
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Figure G-6: AHRS filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; ])
R = diag([0.01; 0.01; 0.04; 0.0001; 0.0001; 0.0001; ])
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G-3 Actual flight data
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Figure G-7: AHRS filter results - filtered states (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([1e− 006; 1e− 006; 1e− 006; 0.0004; 0.0004; 0.0004; ])
R = diag([0.01; 0.01; 0.04; 0.01; 0.01; 0.01; ])
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Figure G-8: AHRS filter results - standard deviation of the state estimation error (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([1e− 006; 1e− 006; 1e− 006; 0.0004; 0.0004; 0.0004; ])
R = diag([0.01; 0.01; 0.04; 0.01; 0.01; 0.01; ])
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Figure G-9: AHRS filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 6.
Hselect = [1; 1; 1; 1; 1; 1]
Q = diag([1e− 006; 1e− 006; 1e− 006; 0.0004; 0.0004; 0.0004; ])
R = diag([0.01; 0.01; 0.04; 0.01; 0.01; 0.01; ])
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Full Kalman filtering tested with
simulated data
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H-1 Using 6 infrared sensors, directions X1-X2-Y1-Y2-Z1-Z2
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Figure H-1: FULL filter results - original states (blue) and filtered states (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-2: FULL filter results - Error (blue), standard deviation of the state estimation error (red)
and RMSE (green).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-3: FULL filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
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Figure H-4: FULL filter results - observability degree.
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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H-2 Using 5 infrared sensors, directions X1-X2-Y1-Y2-Z1
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Figure H-5: FULL filter results - original states (blue) and filtered states (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
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Figure H-6: FULL filter results - Error (blue), standard deviation of the state estimation error (red)
and RMSE (green).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-7: FULL filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-8: FULL filter results - observability degree.
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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144 Full Kalman filtering tested with simulated data

H-3 Using 4 infrared sensors, directions X1-X2-Y1-Z1
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Figure H-9: FULL filter results - original states (blue) and filtered states (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 0; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-10: FULL filter results - Error (blue), standard deviation of the state estimation error (red)
and RMSE (green).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 0; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-11: FULL filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 0; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-12: FULL filter results - observability degree.
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 0; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-13: FULL filter results - original states (blue) and filtered states (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 0; 1; 1; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
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Figure H-14: FULL filter results - Error (blue), standard deviation of the state estimation error (red)
and RMSE (green).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 0; 1; 1; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-15: FULL filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 0; 1; 1; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-16: FULL filter results - observability degree.
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 0; 1; 1; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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H-5 Using 4 infrared sensors, directions X1-Y1-Z1-Z2
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Figure H-17: FULL filter results - original states (blue) and filtered states (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 0; 1; 0; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-18: FULL filter results - Error (blue), standard deviation of the state estimation error (red)
and RMSE (green).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 0; 1; 0; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-19: FULL filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 0; 1; 0; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-20: FULL filter results - observability degree.
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 0; 1; 0; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])

Menno Wierema B.Sc. M.Sc. thesis



H-6 Using 3 infrared sensors, unobservable, directions X1-Y1-Z1 153

H-6 Using 3 infrared sensors, unobservable, directions X1-Y1-
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Figure H-21: FULL filter results - original states (blue) and filtered states (red).
Unobservable. Rank W = 14.
Hselect = [1; 1; 1; 1; 0; 1; 0; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-22: FULL filter results - Error (blue), standard deviation of the state estimation error (red)
and RMSE (green).
Unobservable. Rank W = 14.
Hselect = [1; 1; 1; 1; 0; 1; 0; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-23: FULL filter results - Original measurement (blue) and corrected measurement (red).
Unobservable. Rank W = 14.
Hselect = [1; 1; 1; 1; 0; 1; 0; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-24: FULL filter results - observability degree.
Unobservable. Rank W = 14.
Hselect = [1; 1; 1; 1; 0; 1; 0; 1; 0]
Q = diag([0.005; 0.002; 0.003; 0.08; 0.08; 0.03; 2; 2; 1; 1; 1; 1; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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H-7 Using 6 infrared sensors, directions X1-X2-Y1-Y2-Z1-Z2,
with 1/10 random walk on sensors
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Figure H-25: FULL filter results - original states (blue) and filtered states (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; 2; 2; 1; 0.01; 0.01; 0.01; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-26: FULL filter results - Error (blue), standard deviation of the state estimation error (red)
and RMSE (green).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; 2; 2; 1; 0.01; 0.01; 0.01; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-27: FULL filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; 2; 2; 1; 0.01; 0.01; 0.01; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure H-28: FULL filter results - observability degree.
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 1]
Q = diag([0.005; 0.002; 0.003; 0.0008; 0.0008; 0.0003; 2; 2; 1; 0.01; 0.01; 0.01; ])
R = diag([3e− 005; 5e− 005; 6e− 006; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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160 Full Kalman filtering tested with real data

I-1 Using 5 infrared sensors - Pendulum movement - Motors off
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Figure I-1: FULL filter results - filtered states (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure I-2: FULL filter results - standard deviation of the state estimation error (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure I-3: FULL filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure I-4: FULL filter results - observability degree.
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure I-5: FULL filter results - 3D plot.
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Figure I-6: FULL - Tracing of the relative motion by a camera in X (blue) and
Y (red) position.
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I-2 Using 5 infrared sensors - Pendulum movement - Motors on
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Figure I-7: FULL filter results - filtered states (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.003; 0.003; 0.003; 0.003; 0.0001; 0.01; ])
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Figure I-8: FULL filter results - standard deviation of the state estimation error (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.003; 0.003; 0.003; 0.003; 0.0001; 0.01; ])
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Figure I-9: FULL filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.003; 0.003; 0.003; 0.003; 0.0001; 0.01; ])
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Figure I-10: FULL filter results - observability degree.
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.003; 0.003; 0.003; 0.003; 0.0001; 0.01; ])
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Figure I-11: FULL filter results - 3D plot.
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Figure I-12: FULL - Tracing of the relative motion by a camera in X (blue)
and Y (red) position.
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I-3 Using 5 infrared sensors - Hand movement Motors off
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Figure I-13: FULL filter results - filtered states (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.09; 0.09; 0.09; 0.09; 0.09; 0.01; ])
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Figure I-14: FULL filter results - standard deviation of the state estimation error (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.09; 0.09; 0.09; 0.09; 0.09; 0.01; ])
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Figure I-15: FULL filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.09; 0.09; 0.09; 0.09; 0.09; 0.01; ])
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Figure I-16: FULL filter results - observability degree.
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.09; 0.09; 0.09; 0.09; 0.09; 0.01; ])
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Figure I-17: FULL filter results - 3D plot.
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172 Full Kalman filtering tested with real data

I-4 Using 5 infrared sensors - Actual flight data
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Figure I-18: FULL filter results - filtered states (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure I-19: FULL filter results - standard deviation of the state estimation error (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure I-20: FULL filter results - Original measurement (blue) and corrected measurement (red).
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure I-21: FULL filter results - observability degree.
Observable. Rank W = 15.
Hselect = [1; 1; 1; 1; 1; 1; 1; 1; 0]
Q = diag([0.4; 0.4; 0.4; 0.0001; 0.0001; 0.0001; 0.01; 0.01; 0.01; 0.0004; 0.0004; 0.0004; ])
R = diag([0.0009; 0.0009; 0.0009; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; ])
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Figure I-22: FULL filter results filtered states positio states.
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