
Compiler construction 2002 week 9

1

Compiler construction
in4020 – lecture 9

Koen Langendoen

Delft University of Technology
The Netherlands

Overview

• code generation for basic blocks
• [instruction selection: BURS]
• register allocation: graph coloring
• instruction ordering: ladder sequences

annotated AST

assembly

code generator

assembler

object file

linker

executable

library

Code generation for
basic blocks

• improve quality of code emitted by
simple code generation

• consider multiple AST nodes at a time

• generate code for maximal basic blocks that
cannot be extended by including adjacent
AST nodes

basic block: a part of the control graph that
contains no splits (jumps) or combines (labels)

Code generation for
basic blocks

• a basic block consists of expressions and
assignments

• fixed sequence (;) limits code generation
• an AST is too restrictive

{ int n;

n = a+1;
x = (b+c) * n;
n = n+1;
y = (b+c) * n;

}

Example AST

+ n

=:

a 1 + n

* x

=:

b c

+ n

=:

n 1 + n

* y

=:

b c

; ; ;

{ int n;

n = a+1;
x = (b+c) * n;
n = n+1;
y = (b+c) * n;

}

Dependency graph

• convert AST to a directed acyclic graph (dag)
capturing essential data dependencies
• data flow inside expressions:

operands must be evaluated before operator is applied

• data flow from a value assigned to variable V to
the use of V:

the usage of V is not affected by other assignments

Compiler construction 2002 week 9

2

AST to dependency graph

• replace arcs by downwards arrows
(upwards for destination under assignment)

• insert data dependencies from use of V to
preceding assignment to V

• insert data dependencies between
consecutive assignments to V

• add roots to the graph (output variables)
• remove ;-nodes and connecting arrows

AST

dependency graph

+

b c a

+

1

*

x

+ +

1

*

y

Example
dependency graph

{ int n;

n = a+1;
x = (b+c) * n;
n = n+1;
y = (b+c) * n;

}

+

b c a

+

1

*

x

+ +

1

*

y

Common subexpression
elimination

• common subexpressions occur multiple
times and evaluate to the same value

{ int n;

n = a+1;
x = (b+c) * n;
n = n+1;
y = (b+c) * n;

}
+

b c a

+

1

*

x

+

1

*

y

Exercise (7 min.)

• given the code fragment

draw the dependency graph before and
after common subexpression elimination.

x := a*a + 2*a*b + b*b;
y := a*a – 2*a*b + b*b;

Answers
From dependency graph
to code

• target: register machine (lecture 8) with
additional operations on memory
• reg op:= reg Add_Reg R2, R1
• reg op:= mem Add_Mem x, R1

• rewrite nodes with machine instruction
templates, and linearize the result
• instruction ordering: ladder sequences
• register allocation: graph coloring

Compiler construction 2002 week 9

3

Linearization of the
data dependency graph

• example:

(a+b)*c – d

• definition of a ladder sequence
• each root node is a ladder sequence
• a ladder sequence S ending in operator node N

can be extended with the left operand of N
• if operator N is communitative then S may also

extended with the right operand of N

Load_Mem a, R1
Add_Mem b, R1
Mul_Mem, c, R1
Sub_Mem d, R1

RT

Linearization of the
data dependency graph

• code generation for a ladder sequence

• instructions from bottom to top, one register

+

b c

*

xStore_Mem R1, x

+

b c

*

x

RT RT

Mul_Reg RT, R1

RT
Add_Mem c, R1

Load_Mem b, R1

Linearization of the
data dependency graph

• late evaluation – don’t occupy registers

• note: code blocks produced in reverse order

• select ladder sequence S without additional incoming
dependencies

• introduce temporary registers for non-leaf operands,
which become additional roots

• generate code for S, using R1 as the ladder register
• remove S from the graph

Example
code generation

Load_Const 1, R1
Add_Reg R3, R1
Mul_Reg, R2, R1
Store_Mem R1, y

1) ladder: y, *, +

Load_Reg R2, R1
Mul_Reg R3, R1
Store_Mem R1, x

2) ladder: x, *
Load_Mem b, R1
Add_Mem c, R1
Load_Reg R1, R2

3) ladder: R2, +
Load_Const 1, R1
Add_Mem c, R1
Load_Reg R1, R3

4) ladder: R3, +

R2 R3

+

b c a

+

1

*

x

+

1

*

y

Exercise (7 min.)

• generate code for the following dependency
graph

*

2

*

+

+

x

-

+

y

*

a

*

b

Answers

Compiler construction 2002 week 9

4

Register allocation by
graph coloring

• procedure-wide register allocation
• only live variables require register storage

• two variables(values) interfere when their
live ranges overlap

dataflow analysis: a variable is live at node N if
the value it holds is used on some path further
down the control-flow graph; otherwise it is dead

Live analysis

a := read();
b := read();
c := read();
d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e
e

a
b

d

a := read();
b := read();
c := read();
d := a + b*c;
if (d < 10) then

e := c+8;
print(c);

else
f := 10;
e := f + d;
print(f);

fi
print(e);

Register interference graph

a b

e

dc

f

a := read();
b := read();
c := read();
d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e
e

a
b

d

Graph coloring

• NP complete problem

• heuristic: color easy nodes last
• find node N with lowest degree
• remove N from the graph
• color the simplified graph
• set color of N to the first color that is

not used by any of N’s neighbors

a b

e

dc

f

Exercise (7 min.)

given that a and b are live on entry and dead on exit,
and that x and y are live on exit:
(a) construct the register interference graph
(b) color the graph; how many register are needed?

{ int tmp_2ab = 2*a*b;
int tmp_aa = a*a;
int tmp_bb = b*b;
x := tmp_aa + tmp_2ab + tmp_bb;
y := tmp_aa - tmp_2ab + tmp_bb;

}

Answers

Compiler construction 2002 week 9

5

Code optimization

• preprocessing
• constant folding a[1] ≡ *(a+4*1) ⇒ *(a+4)
• strength reduction 4*i ⇒ i<<2
• in-lining
• ...

• postprocessing
• peephole optimization: replace inefficient patterns

Load_Reg R2, R1
Load_Reg R1, R2

Load_Reg R2, R1

Summary

• dependency graphs

• code generation for basic blocks
• instruction selection: BURS
• register allocation: graph coloring
• instruction ordering: ladder sequences

annotated AST

assembly

code generator

assembler

object file

linker

executable

library

Homework

• study sections:
• 4.2.6 BURS code generation

• assignment 2 (next week, chap 6):
• make Asterix OO
• deadline June 4 08:59

• print handout for next week [blackboard]

