Compiler construction 2002 week 13

Compiler construction Functional programming
in4020 - lecture 13

languages:
LISP, Scheme, ML, Miranda, Haskell

Koen Langendoen

features:
.) high abstraction level: what vs how, where, when
Delft University of Technology equational reasoning
The Netherlands functions as first class citizens

compiler must work harder!!

Overview of a typical

functional compiler Function application
high-level language concise notation
(Haskell) Haskell 5
desugaring £ 11 13 £(11, 13)
type inference

functional core optimizations
P precedence over all other operators

code generationl

[£ n+1 [£n) +1 |
C |+ |runtime system
Syntactic sugar Polymorphic typing
qsort [] =0 an expression is polymorphic if it ‘has
gsort (x:xs) = gsort [y | y <- xs, y < x] many types’
++ [x]
++ gsort [y | y <- xs, y >= x] examples
offside rule: end-of-equation marking empty list:{]
. . list handling functions
list notation: [1 [1,2,3] (1:(2:(3:[1)))
. . length :: [a] -> Int
pattern matching: case analysis of arguments length [] =0
list comprehension: mathematical sets tength (xixs) =1 + length xs

Compiler construction 2002

Polymorphic type
inference

map £ [] =11
map £ (x:xs) f x : map £ xs

map :: t; -> t;, -> t5
map £ [] =[]

map :: t, -> [a] -> [b]

week 13

Exercise (5 min.)
infer the polymorphic type of the following

higher-order function:

filter £ []
filter £ (x:xs)

[1
if not(f x) then filter f xs
else x : (filter f xs)

map £ (x:xs) = £ x : map £ xs
X I a
f ::a->b
map :: (a -> b) -> [a] -> [b]
Answers

Referential transparency

£ x always denotes the same value

advantage: high-level optimization is easy

let a = £ x

g (£ x) (f x) X
in g a a

disadvantage: no efficient in-place update

add_one [] =[]
add one (x:xs) = x+1 : add one xs

Higher-order functions

functions are first-class citizens

higher-order functions accept functions as
parameters and/or return a function as result

functions may be created “on the fly”

f(x+h) — f(x)
D f=f"wheref'(x) = IimmoT

diff £ = £_
where
£ x = (f (x+th) - £ x)/h
h = 0.0001

Currying: specialize functions

diff £ = £_ deriv £ x = (£ (x+h) - £ x)/h
where where

£ x = (f (xth) - £ x)/h h = 0.0001

h = 0.0001

Q: diff (unary function) = deriv (binary function)?

A: yes! |IZIf, Ox (diff f) x = deriv £ x|

binary function = a unary function returning a unary function
feq...e, =E("feq)...e,)

(deriv square) is a curried function

Compiler construction 2002

week 13

Lazy evaluation

An expression will only evaluated when its value is
needed to progress the computation

additional expressive power (infinite lists)

deriv £ x = lim [(f (x+h) - £ x)/h | h <- downto 0]
where
downto x = [x + 1/2%n | n <- [1..]]
lim (a:b:1st) = if abs (a/b - 1) < eps then b
else lim (b:1st)

overhead for delaying/resuming computations

Structure of a typical
functional compiler

high-level language
(Haskell)

desugaring
type inference

functional core optimizations

code generationl

Graph reduction

implement h.o.f + lazy evaluation @\
key: function application @' e
fei..ep=("f@e)@ey)...@e,) ¥ \
@ e
o , N
execution (interpretation) f ey

build graph for main expression

find reducible expression (redex = func + args)
instantiate body (build graph for rhs)
L

C 4+ runtime system
Example
root
@ @, *
/N A <>
@ 3 square @

AR

twice square 3

le:wice £fx=f£f (f x) <*>
@,

square n = n*n

” £ #<>
twice square 3 square 3

*

Reduction order

a graph may contain multiple redexes
lazy evaluation: choose top-most @-node

@, @
square @ @/ \@
NN, TN

built-in operators (+,-,*, etc) may have
strict arguments that must be evaluated
=> recursive invocation

Implementation

Pnode mul (Pnode arg[]) {

Graph reduction
find next redex
instantiate rhs
update root }

typedef struct node *Pnode;
extern Pnode eval(Pnode root);

Pnode a = eval(arg[0]);
Pnode b = eval(arg[l]);

argument stack

unwind application spine /@\
(fay ...a,) @ @
call f, pass arguments in / \/? \
array (stack) — % square 3

update root with result

return Num(a->nd.num * b->nd.num) ;

FP

Compiler construction 2002

Code generation

AN

average a b = (a+b) / 2 / \ 2

VAN

Pnode average (Pnode arg[]) { @ b
Pnode a = arg[0]; / \
Pnode b = arg[l]; + a

return Appl (Appl (fun_div,
Appl (Appl (fun_add,a),b)),
Num(2)) ;

week 13

Short-circuiting
application spines
@
ey
average a b = (atb) / 2
// \@
Pnode average (Pnode arg[]) { @/ \b
Pnode a = arg[0]; / \
Pnode b = arg[l]; + a

return div(Appl (Appl (fun_add,a),b),
Num(2)) ;
}

call leftmost outermost function directly

Strict arguments

@/@\2
/A
/ @

average a b = (a+b) / 2

Pnode a = arg[0];

Pnode average (Pnode arg[]) { @< \b
+ a

Pnode b = arg[1];

return div(add(a,b), Num(2));
}

evaluate expressions supplied to strict built-in
functions immediately

Strictness analysis

user-defined functions:
propagate sets of strict arguments up the AST

foo x y = if x>0 then x*y
else 0 {x}

if

Av T{M}
> * 0
(x}/ \{) {x}/ \{y}
X 0 X y

Strictness propagation

language construct |propagated set

LOR LOR

if Cthen T else E CO(Tn E)

fun,@Aj@ ... @A, i strict(fun,i) A , ifn=m

i=1

Recursive functions

foo x y = if x>0 then y T
else foo (x+1) y {x}
if

{x} T{M}
> * foo
(x}/ \(} (x}/ \(y}{x)/ \{y)
0 +
)) (xy}/ \n !
x 1

problem: conservative estimation of strictness

Compiler construction 2002

Recursive functions

foo x y = if x>0 then y T
else foo (x+1) y {(x,v}
if
Tx} T(Mx,y}

> * foo(+,+)
{X}/ \{} {X}/ \{y}{X}/ \{y}
x 0 x y + y
{X)/ \{ }
) A N . x 1
solution: optimistic estimation of strictness
iterate until result equals assumption

week 13

Exercise (6 min.)

infer the strict arguments of the following
recursive function:

gxy?o0
gxyz

x

gy x (z-1)

how many iterations are needed?

Answers

step | assumption result

AlwiN

Summary

Haskell feature compiler phase
offside rule lexical analyzer
list notation

list comprehension parser

pattern matching

polymorphic typing semantic analyzer

referential transparency
higher-order functions
lazy evaluation

run-time system
(graph reducer)

TODO

assignment 2:
make Asterix OO
deadline June 4 08:59

study book
chapter 1 — 7, except 4.2.6

make appointment by e-mail for oral exam
30 min per group
koen@ubicom.tudelft.nl

