Compiler construction 2002 week 7

Compiler construction Overview
in4020 - lecture 7

context handling
annotating the AST
Koen Langendoen attribute grammars
manual methods
Delft University of Technology
The Netherlands symbolic interpretation
i
data-flow equations annotated AST
Manual methods for
analyzing the AST Threading the AST
preparing the grounds for code generation determine the control flow graph that records
constant propagation the successor(s) of AST nodes
last-def analysis (reaching definitions) intermediate code st - -y
live analysis PUSH b g
y Lo PUSH b first i %
common subexpression elimination MUL s * *
dead-code elimination PUSH 4 g
PUSH a
. . MUL
we need flow-of-control information PUSH ¢
MUL
SUB
Threading the AST p ‘\w Multiple successors
result is a post-order traversal of * © problem: threading is built around single
the AST / \ Last node pointer .
global variable: Last node pointer ‘4 — g’ / \
PROCEDURE Thread binary expression (Expr node pointer): condition)¢, THEN ELSE
Thread expression (Expr node pointer .left operand); first
Thread expression (Expr node pointer .right operand); “;S\
/I link this node to the dynamically last node \x
SET Last node pointer .successor TO Expr node pointer;
/I make this node the new dynamically last node i . L. Fl
SET Last node pointer TO Expr node pointer; solution: introduce join node - last

Compiler construction 2002

Symbolic interpretation

behaviour of code is determined by (the
values of) variables

simulate run-time execution at compile time
attach a stack representation to each arrow
in the control flow graph

an entry summarizes all compile-time
knowledge about the variable/constant

Symbolic interpretation

IF

condition fv THEN ELSE

Fl

-

Symbolic interpretation

x' x[]
condition _ THEN ELSE

Exercise (5 min.)

draw the control flow graph for
while C do S od

propagate initial stack x[]
when C represents y>x
and S stands for x:=7

> y
\\\ y[5] x[] dead
N X xX=7; code
Y[E| “ay—»0
x[]
y[5]
x|
Answers

Simple symbolic interpretation

used in narrow compiler
simple properties + simple control-flow

example: detecting the use of uninitialized
variables
int foo(int n)
{ int first;
while (n-- > 0) {
if (glob[n] == KEY)

first = n;

maintain property list
advance list through)

control flow graph } return first;

week 7

Compiler construction 2002

Tracking
uninitialized variables

parameter declaration: add (ID:Initialized) tuple
variable declaration: add (ID:Uninitialized) tuple
expression: check status of used variables
assignment: set tuple to (ID:Initialized)

int £ int
control statement int foo(int n)

fork nodes: copy list
. . . while (n-- > 0) {
join nodes: merge lists if (globln] == KEY)

first = n;

{ int first;

merge(Init, Init) = Init }
merge(Uninit, Uninit) = Uninit return first;
merge(x, X) = Maybe }

Simple symbolic interpretation

flow-of-control structures with one entry
and one exit point (no GOTOs)

the values of the property are severely
constrained (see book)

example: constant propagation

Constant propagation

record the exact value iso Initialized
int i = 0;
// i==0
while (condition) {
// i==0
if (i>0) printf("loop reentered\n");

itt;
//i==1
}
// i == {0,1}

simple symbolic interpretation fails

Full symbolic interpretation

maintain a property list for each entry
point (label), initially set to empty
traverse flow of control graph
L: merge current-list into list-L
continue with list-L
jump L; merge current-list into list-L
continue with the empty list
repeat until nothing changed
guarantee termination — select suitable property

Constant propagation

full symbolic interpretation
property: unknown < value < any

int i = 0;
L: // i == ANY
if (condition) { // i == ANY
if (i>0) printf("loop reentered\n");

it+; // i == ANY
goto L; // empty

}
// i == ANY

Data flow equations

“automated” full symbolic interpretation
stack replaced by collection of sets
IN(N)
OUT(N)
semantics are expressed by constant sets
KILL(N)
GEN(N) lIN
equations
IN(N) = Oyt cprodecessop OUTM) 1
OUT(N) = IN(N) \ KILL(N) [T GEN(N) lOUT

Compiler construction 2002

Data flow equations

solved through iteration (closure algorithm)

data-flow nodes may not change the stack

individual statements
int foo(int n)

basic blocks . X
{ int first;
. L: n = n-1;
example: tracking if (0 o= 0)
uninitialized variables if (glob[n] == KEY)
properties: | x, M x, U x first = n;
GEN(x = expr;) ={I x} goto L;

}

return first;

KILL(x = expr;) ={U x, M x}

0 int foo(int n)

. . { int first;

Iterative solution lﬁ nUf
1 L: n=n-1;

l{l nUf

2/ if (n >= 0) ——m—

initialization: set all
sets to empty

iterate from top to Fl i, Mf}lT

bottom 3| if (glob[n] == KEY)
INN) = Dy sy OUT(M) [T anmnF
OUT(N) = IN(N) \ KILL(N) 00 GEN(N) 4 first = n;
statement | KILL GEN l{l n, I}

0 ln Yt 5 goto L; |

1 U, M, In {nMf

4 Us Mg Ig A

6 return first;

Iterative solution

iteration 1 iteration 2
statement | KILL GEN IN ouT IN ouT
0 Ih Us In Ut In Ur
1 U, M, [N I, Us 1, Us In Us lh Ug
2 I, Ug I, Us I Mg I Mg
3 I, Us 1, Ug I Mg I Mg
4 Ur Mg ¢ I, Us [P I Mg Il
5 I Mg I Mg I Mg I Mg
6 I, Us I, Us Ih Mg In Mg

Efficient data-flow equations

limit to (set of) on/off properties
set union = bitwise OR
set difference = bitwise AND NOT

combine statements into basic blocks
KILL[S;;S,] = KILL[S,] O KILL[S,]
GEN[S,;S,] = GEN[S,] O (GEN[S,] \ KILL[S,])

sort data-flow graph
depth-first traversal (break cycles!)

Live analysis

a variable is live at node N if the value it
holds is used on some path further down
the control-flow graph; otherwise it is dead

useful information for register allocation

information must flow “backwards” (up)
through the control-flow graph

difficult for symbolic interpretation

easy for data flow equations

Solving data-flow
equations

forwards
IN(N) = I:lM [predecessor|N] OUT(M)
OUT(N) = IN(N) \ KILL(N) 00 GEN(N)
if (cond)
backwards
OUTl

OUT(N) = |:lM O successor[N] IN(M)
IN(N) = OUT(N) \ KILL(N) O GEN(N)

Compiler construction 2002 week 7

Exercise (5 min.) Exercise (7 min.)
determine the KILL and GEN sets for the property draw the control-flow graph for the following code
“V is live here” for the following statements fragment -
double average (int n, double v[])
statement S KILL GEN { int i;
v=alb double sum = 0.0;
v = M[i] for (i=0; i<n; i++) {
M[i] = v sum += v[i];
fay, - ,ap) }
v=f(ay,ay) } return sum/n;
if a>b then goto L, else goto L,
L: perform backwards live analysis using the KILL
goto L and GEN sets from the previous exercise
Answers Summary
l -5 manual methods for annotating the AST
1 OUT(N) ~ M O successor[N] IN(M) threading
IN(N) = OUT(N) \ KILL(N) [0 GEN(N) symbolic interpretation
l statement | KILL | GEN data-flow equations
2 1

symbolic interpretation

l 2
3
4

data-flow equations

simple ‘ full
method stack-based simulation | IN, OUT, GEN, KILL sets
granularity AST node basic block
algorithm | one-pass ‘ iterative iterative
direction forwards forwards & backwards

Homework

study sections:
3.2.4 interprocedural data-flow analysis
3.2.5.1 live analysis by symbolic interpretation

assignment 1:
replace yacc with LLgen
deadline April 9 08:59

print handout for next week [blackboard]

