
Compiler construction 2002 week 12

1

Compiler construction
in4020 – lecture 12

Koen Langendoen

Delft University of Technology
The Netherlands

Overview:
memory management

• explicit deallocation
• malloc() + free()

• implicit deallocation: garbage collection
• reference counting
• mark & scan
• two-space copying

Memory management

What has a compiler to do with memory
management?
• compiler uses heap-allocated data structures
• modern languages have automatic data

(de)allocation
• garbage collection part of runtime support system
• compiler usually assists in identifying pointers

Data allocation with
explicit deallocation

malloc()
• find free block of requested size
• mark it in use
• return a pointer to it.

free()
• mark the block as not in use.

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr, size_t size);

Heap layout

S
I
Z
E

S

0

S
I
Z
E

S

1

S
I
Z
E

S

0

S
I
Z
E

S

1

...

low high

marked
free

marked
in use

blockblock

chunkchunk

in use free

pointer to
user data

Free()

PROCEDURE Free (Block pointer):
SET Chunk pointer TO Block pointer – Admin size;
SET Chunk pointer .free TO True;

S
I
Z
E

S

1

S
I
Z
E

S

0

S
I
Z
E

S

1

...free

S
I
Z
E

S

0

in use

S
I
Z
E

S

1

free

Compiler construction 2002 week 12

2

Malloc()

S
I
Z
E

S

1

S
I
Z
E

S

0

S
I
Z
E

S

1

...free

FUNCTION Malloc (Block size) RETURNS a generic pointer:
SET Pointer TO Free block of size (Block size);
IF pointer /= NULL: RETURN pointer;

Coalesce free chunks ();
RETURN Free block of size (Block size);

S
I
Z
E

S

0

in use

S
I
Z
E

S

1

free

• walk chunks from low to high
• check if chunk is free AND large enough
• if so, mark chunk in use AND return block pointer

S
I
Z
E

S

0

in use

S
I
Z
E

S

1

free

Free block of size (request)

• walk chunks from low to high
• check if chunk is free AND large enough
• if so, mark chunk in use AND return block pointer
• optimization: split chunk to free unused part

S
I
Z
E

S

1

S
I
Z
E

S

0

S
I
Z
E

S

1

...free

S
I
Z
E

S

0

S
I
Z
E

S

1

block pointer

Free block of size

FUNCTION Free block of size (Block size)
RETURNS a generic pointer:

SET Chunk ptr TO Heap low;
SET Request TO Block size + Admin size;

WHILE Chunk ptr < Heap high:
IF Chunk ptr .free AND Chunk ptr .size >= Request:

Split chunk (Chunk ptr, Request)
SET Chunk ptr .free TO False;
RETURN Chunk ptr + Admin size;

SET Chunk ptr TO Chunk ptr + Chunk ptr .size;
RETURN NULL;

next

S
I
Z
E

S

0

in use

S
I
Z
E

S

1

free

Coalesce free chunks ()

• walk chunks from low to high
• check if chunk is free
• if so, coalesce all subsequent free chunks

S
I
Z
E

S

1

S
I
Z
E

S

0

S
I
Z
E

S

1

...
S
I
Z
E

S

0

S
I
Z
E

S

1

nextnext

Coalesce free chunks

PROCEDURE Coalesce free chunks ():
SET Chunk ptr TO Heap low;

WHILE Chunk ptr < Heap high:
IF Chunk ptr .free:

SET Next TO Chunk ptr + Chunk ptr .size;
WHILE Next < Heap high AND Next .free:
SET Next TO Next + Next .size;

SET Chunk ptr .size TO Next - Chunk ptr;

SET Chunk ptr TO Chunk ptr + Chunk ptr .size;

Optimizations

free: poor performance (linear search)
malloc: irregular performance (coalesce phase)

solutions:
• free lists indexed by size
• coalesce at free()

S
I
Z
E

S

0

in use

S
I
Z
E

S

1

free

S
I
Z
E

S

1

S
I
Z
E

S

0

S
I
Z
E

S

1

...
S
I
Z
E

S

0

S
I
Z
E

S

1

free list

2log(size) 6543

use first field
as next ptr

Compiler construction 2002 week 12

3

Malloc() with free lists

FUNCTION Malloc (Block size) RETURNS a generic pointer:
SET Chunk size TO Block size + Admin size;
SET Index TO 2log(Chunk size);

IF Index < 3:
SET Index TO 3;

IF Index <= 10 AND Free list[Index] /= NULL:
SET Pointer TO Free list[Index];
SET Free list[Index] .next TO Pointer .next;
RETURN Pointer + Admin size;

RETURN Free block of size (Block size);

Exercise (5 min.)

• give the pseudo code for free() when
using free lists indexed by size.

Answers Garbage collection

• memory allocation is explicit (new)
• memory deallocation is implicit

• garbage set: all chunks that will no longer be
used by the program
• chunks without incoming pointers
• chunks that are unreachable from non-heap data

Example

A

C

D

E

F

B

heaproot set

Cyclic garbage

C

E

F

B

heaproot set

DA

garbage?

• “no-pointers”: NO
• “not-reachable”: YES

Compiler construction 2002 week 12

4

Compiler assistance:
identifying pointers

• pointers inside chunks
• user-defined data structures

• compiler: generate self-descriptive chunks

• pointers located outside the heap (root set)
• global data + stack

• compiler: generate activation record descriptions

Self-descriptive chunks

• bitmap per data type
• problem: overhead per chunk / interpretation

• compiler-generated routine per data type
• calls GC for each pointer
• problem: recursion

• organize data type to start off with n pointers
• solution: n can be squeezed into chunk admin

Reference counting

• record #pointers to each chunk
• reclaim when reference count drops to zero

2

2

1

1

2

heaproot set
A D

B E

FC

10 0

11

Maintaining reference
counts

VAR p, q : pointer;
...
p := q;

PROCEDURE Free recursively (Pointer):
FOR each field fi of record Pointer:
IF Points into the heap (fi):

Decrement fi .ref count;
IF fi .ref count = 0:
Free recursively (fi);

Free chunk (Pointer);

source

IF Points into the heap (q):
Increment q .ref count;

IF Points into the heap (p):
Decrement p .ref count;
IF p .ref count = 0:
Free recursively (p);

SET p TO q; target

pointer assignment:

Mark & scan

A

C

D

E

F

B

heaproot set

• mark all reachable chunks
• scan heap for unmarked chunks that can be freed

B E

Mark & scanPROCEDURE Mark (Pointer):
IF NOT Points into the heap (Pointer): RETURN;
SET Pointer .marked TO True;
FOR each field fi of record Pointer:
Mark (fi);

PROCEDURE Scan ():
SET Chunk ptr TO Heap low;

WHILE Chunk ptr < Heap high:
IF Chunk ptr .marked:

SET Chunk ptr .marked TO False;
ELSE

SET Chunk ptr .free TO True;

SET Chunk ptr TO Chunk ptr + Chunk ptr .size;

Compiler construction 2002 week 12

5

Advanced marking

• problem: mark() is recursive
• solution: embed stack in the chunks

each chunk records:
• a count denoting which child pointer is next
• a pointer to the parent node

Advanced marking

2
1
0

S p
t
r

p
t
r

p
t
r

1
1
0

S p
t
r

p
t
r

p
t
r

free bit

mark bit

pointer cnt

size
to parent

0
0

S p
t
r

p
t
r

Advanced marking:
pointer reversal

• avoid additional parent pointer
• use the n-th child pointer when visiting child n

2
1
0

S p
t
r

p
t
r

p
t
r

1
1
0

S p
t
r

p
t
r

p
t
r

to parent

Two-space copying

• most chunks have a short live time
• memory fragmentation must be addressed

• partition heap in two spaces

copy all reachable chunks
to consecutive locations

from to

Two-space copying

• most chunks have a short live time
• memory fragmentation must be addressed

• partition heap in two spaces

copy all reachable chunks
to consecutive locations

from tofromto

Copying to to-space

• copy root set
• leave forwarding

pointers
• scan to-space for

reachable cells in
from-space

C

D

E

F

B

from

to

A

CA

scanscanscan

Compiler construction 2002 week 12

6

Copying to to-space

• copy root set
• leave forwarding

pointers
• scan to-space for

reachable cells in
from-space

C

E

F

B

from

to

A

C

scanscanscan

A D

Copying to to-space

• copy root set
• leave forwarding

pointers
• scan to-space for

reachable cells in
from-space

C

EB

from

to

A

CA D F

scan

Summary

Memory management

• explicit deallocation
• malloc() + free()

• implicit deallocation: garbage collection
• reference counting
• mark & scan
• two-space copying

Homework

• study sections:
• 5.2.6 Compaction
• 5.2.7 Generational garbage collection

• assignment 2:
• make Asterix OO
• deadline June 4 08:59

• print handout for last week [blackboard]

