Compiler construction 2002

Compiler construction
in4020 - lecture 9
Koen Langendoen

Delft University of Technology
The Netherlands

annotated AST

Overview

code generator

i i [_assembly |
code generation for basic blocks gaiilil

[instruction selection: BURS]
register allocation: graph coloring
instruction ordering: ladder sequences

assembler

[_objectfile T
—

linker

executable

Code generation for
basic blocks

improve quality of code emitted by
simple code generation

consider multiple AST nodes at a time

basic block: a part of the control graph that
contains no splits (jumps) or combines (labels)

generate code for maximal basic blocks that
cannot be extended by including adjacent
AST nodes

Code generation for
basic blocks

a basic block consists of expressions and
assignments

int n;

n = a+l;

x = (b+c) * n;

n = n+l;

y = (b+c) * n;
}

fixed sequence (;) limits code generation
an AST is too restrictive

{ int n;

Example AST -
x = (b+c) * n;
n = n+l;
y = (b+c) * n;

/+\ ’ /\) /+\ ’ /*\ ’
a 1 /+\ n n 1 /—I—\ n
b c b c

Dependency graph

convert AST to a directed acyclic graph (dag)
capturing essential data dependencies

data flow inside expressions:
operands must be evaluated before operator is applied

data flow from a value assigned to variable V to
the use of V:
the usage of V is not affected by other assignments

week 9

Compiler construction 2002

AST to dependency graph

AST

replace arcs by downwards arrows
(upwards for destination under assignment)

insert data dependencies from use of V to
preceding assignment to V

insert data dependencies between
consecutive assignments to V

add roots to the graph (output variables)
remove ;-nodes and connecting arrows

dependency graph

Example
dependency graph

{ int n;

M B X B
oo

Common subexpression
elimination

common subexpressions occur multiple
times and evaluate to the same value

Exercise (7 min.)

given the code fragment

X := a*a + 2*a*b + b*b;
y := a*a - 2*a*b + b*b;

draw the dependency graph before and
after common subexpression elimination.

{ int n; x y
n = at+l; l l
x = (b+c) * n; o X
y = (b+c) * n; X X
) N\
b cC a 1
Answers

From dependency graph
to code

target: register machine (lecture 8) with
additional operations on memory
reg op:=reg Add_Reg R2, R1
reg op:= mem Add_Mem x, R1

rewrite nodes with machine instruction

templates, and linearize the result
instruction ordering: ladder sequences
register allocation: graph coloring

Compiler construction 2002

Linearization of the
data dependency graph

example: Load_Mem a, R1
Add_Mem b, R1
Mul_Mem, ¢, R1

Sub_Mem d, R1

definition of a ladder sequence
each root node is a ladder sequence
a ladder sequence S ending in operator node N
can be extended with the left operand of N
if operator N is communitative then S may also
extended with the right operand of N

(at+b)*c-d

Linearization of the
data dependency graph

code generation for a ladder sequence

Store_Mem Ry, x

X
* Mul_Reg Ry, R4
/f\ Ry Add_Mem ¢, R,

b c Load_Mem b, R,

instructions from bottom to top, one register

Linearization of the
data dependency graph

late evaluation — don’t occupy registers
3

select ladder sequence S without additional incoming
dependencies

introduce temporary registers for non-leaf operands,
which become additional roots

generate code for S, using R1 as the ladder register
remove S from the graph

L |
note: code blocks produced in reverse order

Example
code generation

X

e |

R 3
Load_Const 1, R1
Add_Reg R3, R1 {M
Mul_Reg, R2, R1 /\

1) ladder: y, *, +

Store_ Mem R1,y b c a 1 1
2) ladder: x, * 3) ladder: R2, + 4) ladder: R3, +
Load_Reg R2, R1 Load_Mem b, R1 Load_Const 1, R1
Mul_Reg R3, R1 Add_Mem c, R1 Add_Mem c, R1

Store_Mem R1,x = Load_Reg R1,R2 | Load_RegR1, R3

week 9

Exercise (7 min.)

generate code for the following dependency
graph

Answers

Compiler construction 2002

Register allocation by
graph coloring

procedure-wide register allocation
only live variables require register storage

dataflow analysis: a variable is live at node N if
the value it holds is used on some path further
down the control-flow graph; otherwise it is dead

two variables(values) interfere when their
live ranges overlap

Live analysis

a := read(); |a a := read();
b := read(); b := read();
c := read(); T c := read();
d := a + b*c; Td d :=a + bre;
if (d < 10) then

| / e := c+8;
d < 10 print(c);
/ else

e := c+8; £ := 10; £ := 10;
e :=f + d; e :=f + d;
print(£f); print(£f) ;

fi
rint (e) ; print(e);

print(c);

Register interference graph

read() ; a a
read() ;

read() ; T
a + b*c; d d
d < 10 /

e := c+8;‘|2§);
print(c); e := f + d;

print(£f) ;

[P e T o 2
oo

Graph coloring
NP complete problem &

heuristic: color easy nodes last d
find node N with lowest degree
remove N from the graph
color the simplified graph

set color of N to the first color that is
not used by any of N's neighbors

Exercise (7 min.)

{ int tmp_2ab = 2*a*b;
int tmp_aa = a*a;
int tmp_bb = b*b;
X := tmp aa + tmp_2ab + tmp_bb;
y := tmp_aa - tmp_ 2ab + tmp_bb;
}
given that a and b are live on entry and dead on exit,
and that x and y are live on exit:
(a) construct the register interference graph
(b) color the graph; how many register are needed?

Answers

week 9

Compiler construction 2002 week 9

imi i [annotated AST |
Code optimization Summary annolaled AST
preprocessing dependency graphs
bl
constant folding a[l] = *(a+4*1) O *(a+4)
strength reduction a*i [i<<2 code generation for basic blocks
in-lining instruction selection: BURS

register allocation: graph coloring
instruction ordering: ladder sequences

I
—
postprocessing
peephole optimization: replace inefficient patterns

linker

Load_Reg R2, R1 Load_Reg R2, R1
Load_Reg R1, R2

Homework

study sections:
4.2.6 BURS code generation

assignment 2 (next week, chap 6):
make Asterix OO
deadline June 4 08:59

print handout for next week [blackboard]

