
Compiler construction 2002 week 1

1

Compiler construction
in4020 – course 2001/2002

Koen Langendoen

Delft University of Technology
The Netherlands

Goals

• understand the structure of a compiler
• understand how the components operate
• understand the tools involved

• scanner generator, parser generator, etc.

• understanding means
• [theory] be able to read source code
• [practice] be able to adapt/write source code

Format:
“werkcollege” + practicum

• 14 x 2 hours of interactive lectures 1 sp
• book “Modern Compiler Design”
• schedule: see blackboard
• handouts: see blackboard

• assignment 2 sp
• groups of 2 students
• modify reference compiler

• oral exam 1 sp

What is a compiler?

program
in some
source

language

executable
code for
target

machine

front-end
analysis

semantic
represen-

tation

back-end
synthesis

compiler

Why study
compilerconstruction?

• curiosity
• better understanding of programming

language concepts
• wide applicability

• transforming “data” is very common
• many useful data structures and algorithms

• practical application of “theory”

Overview
lecture 1

• [introduction]
• compiler structure

• exercise

----------------- 15 min. break ----------------------

• lexical analysis
• excercise

Compiler construction 2002 week 1

2

Compiler structure

• L+M modules = LxM compilers

program
in some
source

language

front-end
analysis

semantic
represen-

tation

executable
code for
target

machine

back-end
synthesis

compiler

program
in some
source

language

front-end
analysis

executable
code for
target

machine

back-end
synthesis

executable
code for
target

machine

back-end
synthesis

Limitations of modular
approach

• performance
• generic vs specific
• loss of information

• variations must be small
• same programming paradigm
• similar processor architecture

program
in some
source

language

front-end
analysis

semantic
represen-

tation

executable
code for
target

machine

back-end
synthesis

compiler

program
in some
source

language

front-end
analysis

executable
code for
target

machine

back-end
synthesis

executable
code for
target

machine

back-end
synthesis

Semantic representation

• heart of the compiler
• intermediate code

• linked lists of pseudo instructions
• abstract syntax tree (AST)

program
in some
source

language

executable
code for
target

machine

front-end
analysis

semantic
represen-

tation

back-end
synthesis

compiler

AST example

• expression grammar

expression → expression ‘+’ term | expression ‘-’ term | term
term → term ‘*’ factor | term ‘/’ factor | factor
factor → identifier | constant | ‘(‘ expression ‘)’

• example expression

b*b – 4*a*c

parse tree: b*b – 4*a*c

‘b’

identifier

expression

term

factor

term

‘b’

factor

identifier

‘*’

‘4’

constant

term

factor

term

‘a’

factor

identifier

‘*’

term

factor‘*’

‘c’

identifier

expression

‘-’

AST: b*b – 4*a*c

‘*’

‘c’

‘-’

‘b’

‘4’

‘*’

‘a’

‘*’

‘b’

Compiler construction 2002 week 1

3

annotated AST: b*b – 4*a*c

• identifier
• constant
• term
• expression

‘*’

‘c’

‘-’

‘b’

‘4’

‘*’

type: real
loc: reg1

type: real
loc: reg2

type: real
loc: const

type: real
loc: sp+24

type: real
loc: reg2

‘a’
type: real
loc: sp+8

‘*’

type: real
loc: reg1

type: real
loc: sp+16 ‘b’

type: real
loc: sp+16

AST exercise (5 min.)

• expression grammar

expression → expression ‘+’ term | expression ‘-’ term | term
term → term ‘*’ factor | term ‘/’ factor | factor
factor → identifier | constant | ‘(‘ expression ‘)’

• example expression

b*b – (4*a*c)

• draw parse tree and AST

Answers
front-end:
from program text to AST

program text

lexical analysis

syntax analysis

context handling

annotated AST

tokens

AST

scanner
generator

token
description

parser
generator

language
grammar

Lexical analysis

• covert stream of characters to stream of tokens

• what is a token?
• sequence of characters with a semantic notion, see

language definition
• rule of thumb: two characters belong to the same

token if inserting white space changes the meaning.

digit = *ptr++ - ’0’;
digit = *ptr+ + - ’0’;

Tokens

• attributes
• type
• lexeme
• value
• file position

• examples

typedef struct {
int class;
char *repr;
file_pos position;

} Token_Type;

1.2, .002, 1e6REAL
ifIF

15, 082, 666NUMBER
foo, t3, ptrIDENTIFIER

lexemetype

Compiler construction 2002 week 1

4

Non-tokens

• white spaces
spaces, tabs, newlines

• comments
/* a C-style comment */

// a C++ comment

• preprocessor directives
#include “lex.h”

#define is_digit(d) (’0’ <= (d) && (d) <= ’9’)

Regular expressions

R itself(R)
Grouping

either an R1 or an R2R1 | R2

an R1 followed by an R2R1 R2

Composition operators
one or more occurrences of RR+
zero or more occurrences of RR*
an R or nothing (= optionally an R)R?

Repetition operators
any of the characters a,b,c and the range A-Z[abcA-Z]
any character, usually except a newline.
the character xx
MatchingBasic patterns

Examples of
regular expressions

• an integer is a sequence of digits:

[0-9]+

• an identifier is a sequence of letters and
digits; the first character must be a letter:

[a-z][a-z0-9]*

Regular descriptions

• structuring regular expressions by
introducing named sub expressions

letter → [a-zA-Z]
digit → [0-9]
letter_or_digit → letter | digit
identifier → letter letter_or_digit*

• define before use

Exercise (5 min.)

• write down regular descriptions for the
following descriptions:
• an integral number is a non-zero sequence of digits

optionally followed by a letter denoting the base class
(b for binary and o for octal).

• a fixed-point number is an (optional) sequence of
digits followed by a dot (’.’) followed by a sequence of
digits.

• an identifier is a sequence of letters and digits; the
first character must be a letter. The underscore _
counts as a letter, but may not be used as the first or
last character.

Answers

Compiler construction 2002 week 1

5

syntax
analyzer

Lexical analysis

• covert stream of characters to stream of tokens
• tokens are defined by a regular description
• tokens are demanded one-by-one by the syntax

analyzer

program
text ASTlexical

analyzer tokens

get_next_token()

interface

extern Token_Type Token;
/* Global variable that holds the current token.
*/

void start_lex(void);
/* Must be called before the first call to
* get_next_token().
*/

void get_next_token(void);
/* Load the next token into the global
* variable Token.
*/

lexical analysis by hand

• read complete program text into memory
for simplicity
• avoids buffering and arbitrary limits
• variable length tokens

• get_next_token() dispatches on the next
character

input:

dot

main() { printf(”hello world\n”);}

void get_next_token(void) {
int start_dot;

skip_layout_and_comment();
/* now we are at the start of a token or at end-of-file, so: */
note_token_position();

/* split on first character of the token */
start_dot = dot;
if (is_end_of_input(input_char)) {

Token.class = EoF; Token.repr = "<EoF>"; return;
}
if (is_letter(input_char)) {recognize_identifier();}
else
if (is_digit(input_char)) {recognize_integer();}
else
if (is_operator(input_char) || is_separator(input_char)) {

Token.class = input_char; next_char();
}
else {Token.class = ERRONEOUS; next_char();}

Token.repr = input_to_zstring(start_dot, dot-start_dot);
}

#define is_end_of_input(ch) ((ch) == '\0')
#define is_layout(ch) (!is_end_of_input(ch) && (ch) <= ' ')

#define is_uc_letter(ch) ('A' <= (ch) && (ch) <= 'Z')
#define is_lc_letter(ch) ('a' <= (ch) && (ch) <= 'z')
#define is_letter(ch) (is_uc_letter(ch) || is_lc_letter(ch))
#define is_digit(ch) ('0' <= (ch) && (ch) <= '9')
#define is_letter_or_digit(ch) (is_letter(ch) || is_digit(ch))
#define is_underscore(ch) ((ch) == '_')

#define is_operator(ch) (strchr("+-*/", (ch)) != NULL)
#define is_separator(ch) (strchr(";,(){}", (ch)) != NULL)

void recognize_integer(void) {
Token.class = INTEGER; next_char();
while (is_digit(input_char)) {next_char();}

}

Character classification &
token recognition Summary

• compiler is a structured toolbox
• front-end: program text → annotated AST
• back-end: annotated AST → executable code

• lexical analysis: program text → tokens
• token specifications
• implementation by hand

• exercises
• AST
• regular descriptions

Compiler construction 2002 week 1

6

Homework

• find a partner for the “practicum”
• register your group

• send e-mail to koen@pds.twi.tudelft.nl

• print handout lecture 2 [blackboard]

