Compiler construction 2002 week 12

Overview:

Compiler construction memory management

in4020 - lecture 12

explicit deallocation
malloc() + free()
Koen Langendoen

implicit deallocation: garbage collection
Delft University of Technology reference counting

The Netherlands mark & scan

two-space copying

Data allocation with

Memory management explicit deallocation
What has a compiler to do with memory #include <stdlib.h>
management? void *calloc(size_t nmemb, size_t size);

void *malloc(size_t size);
compiler uses heap-allocated data structures void free(void *ptr);

modern languages have automatic data void *realloc(void *ptr, size t size);
(de)allocation
garbage collection part of runtime support system
compiler usually assists in identifying pointers

malloc()
find free block of requested size
mark it in use
return a pointer to it.
free()
mark the block as not in use.

Heap layout Free(
chunk chunk s s S s
A A 1 1 1 1
z z z z
black blgck = free = free = =
s s s s - || - -
1 1 1 1 1 1 0 1
z| z z z
|E| Mmuse [E| free |E| |E| PROCEDURE Free (Block pointer):
| || || || SET Chunk pointer TO Block pointer - Admin size;
0 1 0 1 SET Chunk pointer .free TO True;
low T T T high
pointer to marked marked
user data in use free

Compiler construction 2002

week 12

s s

1 1

z z

free free E E

1 1 0 1

FUNCTION Malloc (Block size) RETURNS a generic pointer:

SET Pointer TO Free block of size (Block size);
IF pointer /= NULL: RETURN pointer;

Coalesce free chunks ();
RETURN Free block of size (Block size);

Free block of size (request)

s

1

z

free E

[mN=-o

s
I
z
E

|r|'|N—UJ

S
1
z
E

0 1 1 0 1

T T block pointer
walk chunks from low to high
check if chunk is free AND large enough
if so, mark chunk in use AND return block pointer
optimization: split chunk to free unused part

Free block of size

FUNCTION Free block of size (Block size)
RETURNS a generic pointer:
SET Chunk ptr TO Heap low;
SET Request TO Block size + Admin size;

WHILE Chunk ptr < Heap high:
IF Chunk ptr .free AND Chunk ptr .size >= Request:
Split chunk (Chunk ptr, Request)
SET Chunk ptr .free TO False;
RETURN Chunk ptr + Admin size;

SET Chunk ptr TO Chunk ptr + Chunk ptr .size;
RETURN NULL;

Coalesce free chunks ()

|I'|'|N—(/)

S s S
1 I 1
z z z
E E E

0 1

0

; -

walk chunks from low to high
check if chunk is free
if so, coalesce all subsequent free chunks

Coalesce free chunks

PROCEDURE Coalesce free chunks ():
SET Chunk ptr TO Heap low;

WHILE Chunk ptr < Heap high:
IF Chunk ptr .free:
SET Next TO Chunk ptr + Chunk ptr .size;
WHILE Next < Heap high AND Next .free:
SET Next TO Next + Next .size;
SET Chunk ptr .size TO Next - Chunk ptr;

SET Chunk ptr TO Chunk ptr + Chunk ptr .size;

Optimizations

free: poor performance (linear search)
malloc: irregular performance (coalesce phase)

solutions:

2log(size) | 3|4 |56
free lists indexed by size

free list ? ’

coalesce at free() — [
v !
s s[| s s[]]
1 1] 1 o
z z| 4 z z||
E E E E e
— — 0—” use first field — — ¢ :
1 1
— — as next ptr — —
0 1] ! E 0 1] !

Compiler construction 2002 week 12

Malloc() with free lists Exercise (5 min.)
FUNCTION Malloc (Block size) RETURNS a generic pointer: give the pseudo code for free() when
SET Chunk size TO Block size + Admin size; USing free IiStS indexed by Size.

SET Index TO 2lc:g(chunk size);

IF Index < 3:
SET Index TO 3;

IF Index <= 10 AND Free list[Index] /= NULL:
SET Pointer TO Free list[Index];
SET Free list[Index] .next TO Pointer .next;
RETURN Pointer + Admin size;

RETURN Free block of size (Block size);

Answers Garbage collection

memory allocation is explicit (new)
memory deallocation is implicit

garbage set: all chunks that will no longer be
used by the program

chunks without incoming pointers

chunks that are unreachable from non-heap data

Example Cyclic garbage

root set heap root set - heap

e ey mmmmm———————

[LITT]

“no-pointers”: NO
“not-reachable”: YES

Compiler construction 2002

Compiler assistance:
identifying pointers

pointers inside chunks
user-defined data structures

compiler: generate self-descriptive chunks

pointers located outside the heap (root set)
global data + stack

compiler: generate activation record descriptions

week 12

Self-descriptive chunks

bitmap per data type
problem: overhead per chunk / interpretation

compiler-generated routine per data type
calls GC for each pointer
problem: recursion

organize data type to start off with n pointers
solution: n can be squeezed into chunk admin

Reference counting

root set

LI

record #pointers to each chunk
reclaim when reference count drops to zero

Maintaining reference
counts

IF Points into the heap (q):
Increment q .ref count;
. . . IF Points into the heap (p):
p0|nter aSSIgnment' Decrement p .ref count;
VAR p, q : pointer; IF p .ref count = 0:
Free recursively (p):;
P = q; source SET p TO q; target
PROCEDURE Free recursively (Pointer):
FOR each field f; of record Pointer:
IF Points into the heap (f;):
Decrement f; .ref count;
IF £f; .ref count = 0:
Free recursively (f;);
Free chunk (Pointer);

Mark & scan

root set heap

mark all reachable chunks
scan heap for unmarked chunks that can be freed

PROCEDURE Mark (Pointer):
IF NOT Points into the heap (Pointer): RETURN;
SET Pointer .marked TO True;
FOR each field f; of record Pointer:
Mark (f;);

PROCEDURE Scan () :
SET Chunk ptr TO Heap low;

WHILE Chunk ptr < Heap high:
IF Chunk ptr .marked:
SET Chunk ptr .marked TO False;
ELSE
SET Chunk ptr .free TO True;

SET Chunk ptr TO Chunk ptr + Chunk ptr .size;

Compiler construction 2002

Advanced marking

problem: mark() is recursive
solution: embed stack in the chunks

each chunk records:
a count denoting which child pointer is next
a pointer to the parent node

week 12
Advanced marking
to parent
size
s[p|p| |P
—/I t|t t
pointerent [[q]=[=| |=
— o]
- L |
mark blt/r [» [S]|P|P
free bit > Ts[ele| o T::
lelt] [t ol
EIEES r
, ol|
L

Advanced marking:
pointer reversal

avoid additional parent pointer
use the n-th child pointer when visiting child n

to parent sS|p|p P

oltft] [t

(2] ==

o] |y

[

b s|p|p P
1lt|t t
1]z |=
|l

Two-space copying

most chunks have a short live time
memory fragmentation must be addressed

copy all reachable chunks
to consecutive locations

partition heap in two spaces

|

Two-space copying

most chunks have a short live time
memory fragmentation must be addressed

copy all reachable chunks
to consecutive locations

partition heap in two spaces

to [(I[] from
1] []

Copying to to-space

L i I

copy root set
leave forwarding
pointers

scan to-space for

reachable cells in

from-space

Compiler construction 2002

Copying to to-space

copy root set
leave forwarding
pointers

scan to-space for ~ X1 /fvvA______ ,

reachable cells in ,

from-space i scan

week 12

Copying to to-space from

ENER:E i

copy root set i 7 |

leave forwarding G I R ISR I

pointers

t

scan to-space for TPls -

reachable cells in !_tA el Iely |,F|L} !
from-space | scan

Summary

Memory management

explicit deallocation
malloc() + free()

implicit deallocation: garbage collection
reference counting
mark & scan
two-space copying

Homework

study sections:
5.2.6 Compaction
5.2.7 Generational garbage collection

assignment 2:
make Asterix OO
deadline June 4 08:59

print handout for last week [blackboard]

